Plant photosynthesis and biomass production are associated with the amount of intercepted light, especially the light distribution inside the canopy. Three virtual canopies (n = 80, 3.25 plants/m2) were constructed based on average leaf size of the digitized plant structures: ‘small leaf’ (98.1 cm2), ‘medium leaf’ (163.0 cm2) and ‘big leaf’ (241.6 cm2). The ratios of diffuse light were set in three gradients (27.8%, 48.7%, 89.6%). The simulations of light interception were conducted under different ratios of diffuse light, before and after the normalization of incident radiation. With 226.1% more diffuse light, the result of light interception could increase by 34.4%. However, the 56.8% of reduced radiation caused by the increased proportion of diffuse light inhibited the advantage of diffuse light in terms of a 26.8% reduction in light interception. The big-leaf canopy had more mutual shading effects, but its larger leaf area intercepted 56.2% more light than the small-leaf canopy under the same light conditions. The small-leaf canopy showed higher efficiency in light penetration and higher light interception per unit of leaf area. The study implied the 3D structural model, an effective tool for quantitative analysis of the interaction between light and plant canopy structure.
MULTIFILE
The increased cultivation of highly productive C4 crop plants may contribute to a second green revolution in agriculture. However, the regulation of mineral nutrition is rather poorly understood in C4 plants. To understand the impact of C4 photosynthesis on the regulation of sulfate uptake by the root and sulfate assimilation into cysteine at the whole plant level, seedlings of the monocot C4 plant maize (Zea mays) were exposed to a non-toxic level of 1.0 µl l−1 atmospheric H2S at sulfate-sufficient and sulfate-deprived conditions. Sulfate deprivation not only affected growth and the levels of sulfur- and nitrogen-containing compounds, but it also enhanced the expression and activity of the sulfate transporters in the root and the expression and activity of APS reductase (APR) in the root and shoot. H2S exposure alleviated the establishment of sulfur deprivation symptoms and seedlings switched, at least partly, from sulfate to H2S as sulfur source. Moreover, H2S exposure resulted in a downregulation of the expression and activity of APR in both shoot and root, though it hardly affected that of the sulfate transporters in the root. These results indicate that maize seedlings respond similarly to sulfate deprivation and atmospheric H2S exposure as C3 monocots, implying that C4 photosynthesis in maize is not associated with a distinct whole plant regulation of sulfate uptake and assimilation into cysteine.
DOCUMENT
Semi-closed greenhouses have been developed in which window ventilation is minimized due to active cooling, enabling enhanced CO2 concentrations at high irradiance. Cooled and dehumidified air is blown into the greenhouse from below or above the canopy. Cooling below the canopy may induce vertical temperature gradients along the length of the plants. Our first aim was to analyze the effect of the positioning of the inlet of cooled and dehumidified air on the magnitudes of vertical temperature and VPD gradients in the semi-closed greenhouses. The second aim was to investigate the effects of vertical temperature gradients on assimilate production, partitioning, and fruit growth. Tomato crops were grown year-round in four semiclosed greenhouses with cooled and dehumidified air blown into the greenhouses from below or above the crop. Cooling below the canopy induced vertical temperature and VPD gradients. The temperature at the top of the canopy was over 5°C higher than at the bottom, when outside solar radiation was high (solar radiation >250 J cm-2 h-1). Total dry matter production was not affected by the location of the cooling (4.64 and 4.80 kg m-2 with cooling from above and from below, respectively). Percentage dry matter partitioning to the fruits was 74% in both treatments. Average over the whole growing season the fresh fruit weight of the harvested fruits was not affected by the location of cooling (118 vs 112 g fruit-1). However, during summer period the average fresh fruit weight of the harvested fruits in the greenhouse with cooling from below was higher than in the greenhouse with cooling from above (124 vs 115 g fruit-1).
DOCUMENT
Carbon dioxide (CO2) is the final waste product for all carbon-containing products. Its reuse will partly mitigate climate change and, in addition, provide a valuable feedstock for fuels and chemicals. Zuyd University of Applied Sciences (ZUYD), Innosyn B.V., and Chemtrix B.V. will develop a flow reactor for photochemical reactions with gases conducted at high pressure. This reactor is the necessary first development towards artificial photosynthesis: the connection of hydrogen (H2) to the ultimate waste product CO2 to store energy in a chemical bond, in order to produce so-called solar fuels and C1-chemicals/products. With an increasing amount of renewables in the energy system, energy storage becomes increasingly important to continuously match supply and demand. In a cooperation between three ZUYD research groups with Chemtrix B.V. and Innosyn B.V., multiple cost-efficient reactor designs for this flow reactor will be analyzed and two designs will be selected to be implemented by small extensions of existing equipment. Simultaneously, two appropriate test re-actions involving a gas (E-Z isomerization followed by hydrogenation) and with a CO2 analogue (a hydrogenation of a carboxylic acid) will be developed to be conducted in the reactor when the con-struction has been finished. We aim to disseminate the new capabilities developed in this KIEM proposal by the project partners with respect to the new reactors to several selected stakeholders. Furthermore, to expand the project several options (SIA-RAAK and H2020 grants) will be explored.