Installing photovoltaic panels (PV) on household rooftops can significantly contribute to mitigating anthropogenic climate change. The mitigation potential will be much higher when households would use PVs in a sustainable way, that is, if they match their electricity demand to their PVs electricity production, as to avoid using electricity from the grid. Whilst some have argued that owning PVs motivate households to use their PV in a sustainable way, others have argued that owning a PV does not result in load shifting, or that PV owners may even use more energy when their PV production is low. This paper addresses this critical issue, by examining to what extent PV owners are likely to shift their electricity demand to reduce the use of electricity from the grid. Extending previous studies, we analyse actual high frequency electricity use from the grid using smart meter data of households with and without PVs. Specifically, we employ generalized additive models to examine whether hourly net electricity use (i.e., the difference between electricity consumed from the grid and supplied back to the grid) of households with PVs is not only lower during times when PV production is high, but also when PV production low, compared to households without PVs. Results indicate that during times when PV production is high, net electricity use of households with PV is negative, suggesting they sent back excess electricity to the power grid. However, we found no difference in net electricity use during times when PV production is low. This suggests that installing PV does not promote sustainable PV use, and that the mitigation potential of PV installment can be enhanced by encouraging sustainable PV use
LINK
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
In order to improve the social acceptance of photovoltaic modules, the choice in panel color and size should be enlarged. Although various approaches have been reported to change the appearance of PV modules, it often adds complexity to the manufacturing process. Here an approach is presented in which a design module can be manufactured on standard module lines, by adding a print interlayer to the module. First results are shown on small PV panels, including performance and stability tests. Also full size panels are shown with an aluminum back panel including mounting structures for easy mounting on roofs and facades. The results show that although there is a drop in conversion efficiency by applying a print, the overall drop is lower than expected based on the print coverage. The stability tests show promising results after thermal cycling, damp heat, UV degradation and outdoor exposure.
MULTIFILE
Grid congestion has caused significant issues for many businesses and consumers, leading to pressing questions about potential expansion, the configuration of electrical infrastructure, opportunities to reduce energy usage, and the impacts of installing photovoltaic (PV) systems. This project is dedicated to developing a digital twin energy management system within an energy hub to enhance efficiency and sustainability. By integrating state-of-the-art digital twin technology with various energy systems, the project, led technically by HAN University of Applied Sciences and with security managed by Impact Iot Solutions, aims to optimize the management of diverse energy sources like solar panels, heat pumps, and storage systems. Central to our approach is ensuring that all data collected during the project, which includes system performance metrics but excludes any personal user information, is used responsibly and stored securely. Local storage at the energy hub allows real-time monitoring and data analysis, with secure remote access for project partners to facilitate collaboration. At the project's conclusion, non-sensitive data will be made publicly available on an open platform, promoting transparency and enabling further research and development by the broader community. This initiative not only seeks to improve energy management practices but also aims to serve as a model for future digital twin implementations in energy hubs worldwide. By focusing on innovation, privacy, and community engagement, the project represents a significant step forward in the integration of digital technologies into sustainable energy solutions.