Installing photovoltaic panels (PV) on household rooftops can significantly contribute to mitigating anthropogenic climate change. The mitigation potential will be much higher when households would use PVs in a sustainable way, that is, if they match their electricity demand to their PVs electricity production, as to avoid using electricity from the grid. Whilst some have argued that owning PVs motivate households to use their PV in a sustainable way, others have argued that owning a PV does not result in load shifting, or that PV owners may even use more energy when their PV production is low. This paper addresses this critical issue, by examining to what extent PV owners are likely to shift their electricity demand to reduce the use of electricity from the grid. Extending previous studies, we analyse actual high frequency electricity use from the grid using smart meter data of households with and without PVs. Specifically, we employ generalized additive models to examine whether hourly net electricity use (i.e., the difference between electricity consumed from the grid and supplied back to the grid) of households with PVs is not only lower during times when PV production is high, but also when PV production low, compared to households without PVs. Results indicate that during times when PV production is high, net electricity use of households with PV is negative, suggesting they sent back excess electricity to the power grid. However, we found no difference in net electricity use during times when PV production is low. This suggests that installing PV does not promote sustainable PV use, and that the mitigation potential of PV installment can be enhanced by encouraging sustainable PV use
LINK
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
In order to improve the social acceptance of photovoltaic modules, the choice in panel color and size should be enlarged. Although various approaches have been reported to change the appearance of PV modules, it often adds complexity to the manufacturing process. Here an approach is presented in which a design module can be manufactured on standard module lines, by adding a print interlayer to the module. First results are shown on small PV panels, including performance and stability tests. Also full size panels are shown with an aluminum back panel including mounting structures for easy mounting on roofs and facades. The results show that although there is a drop in conversion efficiency by applying a print, the overall drop is lower than expected based on the print coverage. The stability tests show promising results after thermal cycling, damp heat, UV degradation and outdoor exposure.
MULTIFILE
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
This OP was deployed in two phases, focusing on Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G). Its first phase took place at a private residence in Loughborough and ran from March 2017 up to December 2017. This phase 1 is also referred to as the ‘Loughborough pilot’. The second phase took place from February 2020 until present at a comparable residence in Burton-upon-Trent, thereafter, referred to as the ‘Burton pilot’ or ‘phase 2’. Both pilots included bi-directional chargers, Electric Vehicles (EV), Battery Static Storage (BSS) and rooftop solar PhotoVoltaic panels (PV).The main goals of this pilot were to demonstrate the added value of V2H and V2G of using additional energy storage and PV in households.Challenges encountered in the project include interoperability issues, particularly in phase 1, and the unforeseen development of the homeowner selling his house, meaning a new location needed to be found. However, this challenge ultimately provided an excellent opportunity to implement lessons for interoperability and to act upon the recommendations from the intermediate analysis of the Loughborough pilot. This report is mainly focussed on phase 1 (Loughborough), and additional analysis for Burton-upon-Trent (phase 2) can be found in the appendix.
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
An important consideration for future age-friendly cities is that older people are able to live in housing appropriate for their needs. While thermal comfort in the home is vital for the health and well-being of older people, there are currently few guidelines about how to achieve this. This study is part of a research project that aims to improve the thermal environment of housing for older Australians by investigating the thermal comfort of older people living independently in South Australia and developing thermal comfort guidelines for people ageing-in-place. This paper describes the approach fundamental for developing the guidelines, using data from the study participants’ and the concept of personas to develop a number of discrete “thermal personalities”. Hierarchical Cluster Analysis (HCA) was implemented to analyse the features of research participants, resulting in six distinct clusters. Quantitative and qualitative data from earlier stages of the project were then used to develop the thermal personalities of each cluster. The thermal personalities represent dierent approaches to achieving thermal comfort, taking into account a wide range of factors including personal characteristics, ideas, beliefs and knowledge, house type, and location. Basing the guidelines on thermal personalities highlights the heterogeneity of older people and the context-dependent nature of thermal comfort in the home and will make the guidelines more user-friendly and useful. Original publication at MDPI: https://doi.org/10.3390/ijerph17228402 © 2020 by the authors. Licensee MDPI.
MULTIFILE
The role of smart cities in order to improve older people’s quality of life, sustainability and opportunities, accessibility, mobility, and connectivity is increasing and acknowledged in public policy and private sector strategies in countries all over the world. Smart cities are one of the technological-driven initiatives that may help create an age-friendly city. Few research studies have analysed emerging countries in terms of their national strategies on smart or age-friendly cities. In this study, Romania which is predicted to become one of the most ageing countries in the European Union is used as a case study. Through document analysis, current initiatives at the local, regional, and national level addressing the issue of smart and age-friendly cities in Romania are investigated. In addition, a case study is presented to indicate possible ways of the smart cities initiatives to target and involve older adults. The role of different stakeholders is analysed in terms of whether initiatives are fragmentary or sustainable over time, and the importance of some key factors, such as private–public partnerships and transnational bodies. The results are discussed revealing the particularities of the smart cities initiatives in Romania in the time frame 2012–2020, which to date, have limited connection to the age-friendly cities agenda. Based on the findings, a set of recommendations are formulated to move the agenda forward. CC-BY Original article: https://doi.org/10.3390/ijerph17145202 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives") https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
MULTIFILE
Like the professionals, design students tend to avoid the complexity of the user context, and moral issues are largely overlooked. This inspired us to explore whether we could engage design students in thinking about moral issues by exploring different ethical frameworks in their designing. As a case environment we chose smart-grid product service combinations. In this paper we first discuss the ethical frameworks of four selected philosophers’: Plato, Rousseau, Kant, & Mill. Then we will describe the student design process, the resulting four smart grid service concepts and the user insights that came from a user evaluation. We discuss how this approach allowed the students to get insights in their own ethical stance and how they allowed users to reflect on possible futures. We also discuss how these ‘probing’ concepts were used within the larger smart grid project.
DOCUMENT
Grid congestion has caused significant issues for many businesses and consumers, leading to pressing questions about potential expansion, the configuration of electrical infrastructure, opportunities to reduce energy usage, and the impacts of installing photovoltaic (PV) systems. This project is dedicated to developing a digital twin energy management system within an energy hub to enhance efficiency and sustainability. By integrating state-of-the-art digital twin technology with various energy systems, the project, led technically by HAN University of Applied Sciences and with security managed by Impact Iot Solutions, aims to optimize the management of diverse energy sources like solar panels, heat pumps, and storage systems. Central to our approach is ensuring that all data collected during the project, which includes system performance metrics but excludes any personal user information, is used responsibly and stored securely. Local storage at the energy hub allows real-time monitoring and data analysis, with secure remote access for project partners to facilitate collaboration. At the project's conclusion, non-sensitive data will be made publicly available on an open platform, promoting transparency and enabling further research and development by the broader community. This initiative not only seeks to improve energy management practices but also aims to serve as a model for future digital twin implementations in energy hubs worldwide. By focusing on innovation, privacy, and community engagement, the project represents a significant step forward in the integration of digital technologies into sustainable energy solutions.