PurposeTo determine which factors are associated with physical inactivity in hospitalized adults of all ages.MethodsA cross-sectional sample of 114 adults admitted to a gastrointestinal surgery, internal medicine or cardiology hospital ward (median age 60, length of stay 13 days) were observed during one random day from 8 am to 8 pm using wireless accelerometers and behavioral mapping protocols. Factors (e.g., comorbidities, self-efficacy, independence in mobility, functional restraints) were collected from medical records, surveys, and observations.ResultsPatients were physically active for median(IQR) 26 (13–52.3) min and were observed to lie in bed for 67.3%, sit for 25.2%, stand for 2.5%, and walk for 5.0% of the time. Multivariable regression analysis revealed that physical inactivity was 159.87% (CI = 89.84; 255.73) higher in patients dependent in basic mobility, and 58.88% (CI = 10.08; 129.33) higher in patients with a urinary catheter (adjusted R2 = 0.52). The fit of our multivariable regression analysis did not improve after adding hospital ward to the analysis (p > 0.05).ConclusionsIndependence in mobility and urine catheter presence are two important factors associated with physical inactivity in hospitalized adults of all ages, and these associations do not differ between hospital wards. Routine assessments of both factors may therefore help to identify physically inactive patients throughout the hospital.IMPLICATIONS FOR REHABILITATIONHealthcare professionals should be aware that physical inactivity during hospital stay may result into functional decline.Regardless of which hospital ward patients are admitted to, once patients require assistance in basic mobility or have a urinary catheter they are at risk of physical inactivity during hospital stay.Implementing routine assessments on the independence of basic mobility and urine catheter presence may therefore assist healthcare professionals in identifying physically inactive patients before they experience functional decline.
Why a position statement on Assessment in Physical Education? The purpose of this AIESEP Position Statement on Assessment in Physical Education (PE) is fourfold: • To advocate internationally for the importance of assessment practices as central to providing meaningful, relevant and worthwhile physical education; • To advise the field of PE about assessment-related concepts informed by research and contemporary practice; • To identify pressing research questions and avenues for new research in the area of PE assessment; • To provide a supporting rationale for colleagues who wish to apply for research funds to address questions about PE assessment or who have opportunities to work with or influence policy makers. The main target groups for this position statement are PE teachers, PE pre-service teachers, PE curriculum officers, PE teacher educators, PE researchers, PE administrators and PE policy makers. How was this position statement created? The AIESEP specialist seminar ‘Future Directions in PE Assessment’ was held from October 18-20 2018, at Fontys University of Applied Sciences in Eindhoven, the Netherlands. The seminar aimed to bring together leading scholars in the field to present and discuss ‘evidence-informed’ views on various topics around PE assessment. It brought together 71 experts from 20 countries (see appendix 2) to share research on PE assessment via keynote lectures and research presentations and to discuss assessment-related issues in interactive sessions. Input from this meeting informed a first draft version of the statement. This first draft was sent to all participants of the specialist seminar for feedback, from which a second draft was created. This draft was presented at the AIESEP International Conference 2019 in Garden City, New York, after which further feedback was collected from participants both on site and through an online survey. The main contributors to the writing of the position statement are mentioned in appendix 1. Approval was granted by the AIESEP Board on May 7th, 2020. Largely in keeping with the main themes of the AIESEP specialist seminar ‘Future Directions in PE Assessment’, this Position Statement is divided into the following sections: Assessment Literacy; Accountability & Policy; Instructional Alignment; Assessment for Learning; Physical Education Teacher Education (PETE) and Continuing Professional Development; Digital Technology in PE Assessment. These sections are preceded by a brief overview of research data on PE. The statement concludes with directions for future research.
Formative assessment (FA) is an effective educational approach for optimising student learning and is considered as a promising avenue for assessment within physical education (PE). Nevertheless, implementing FA is a complex and demanding task for in-service PE teachers who often lack formal training on this topic. To better support PE teachers in implementing FA into their practice, we need better insight into teachers’ experiences while designing and implementing formative strategies. However, knowledge on this topic is limited, especially within PE. Therefore, this study examined the experiences of 15 PE teachers who participated in an 18-month professional development programme. Teachers designed and implemented various formative activities within their PE lessons, while experiences were investigated through logbook entries and focus groups. Findings indicated various positive experiences, such as increased transparency in learning outcomes and success criteria for students as well as increased student involvement, but also revealed complexities, such as shifting teacher roles and insufficient feedback literacy among students. Overall, the findings of this study underscore the importance of a sustained, collaborative, and supported approach to implementing FA.
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.