Background: Currently, the Ponseti method is the gold standard for treatment of clubfeet. For long-term func- tional evaluation of this method, gait analysis can be performed. Previous studies have assessed gait differences between Ponseti treated clubfeet and healthy controls. Research question/purpose: The aims of this systematic review were to compare the gait kinetics of Ponseti treated clubfeet with healthy controls and to compare the gait kinetics between clubfoot patients treated with the Ponseti method or surgically. Methods: A systematic search was performed in Embase, Medline Ovid, Web of Science, Scopus, Cochrane, Cinahl ebsco, and Google scholar, for studies reporting on gait kinetics in children with clubfeet treated with the Ponseti method. Studies were excluded if they only used EMG or pedobarography. Data were extracted and a risk of bias was assessed. Meta-analyses and qualitative analyses were performed. Results: Nine studies were included, of which five were included in the meta-analyses. The meta-analyses showed that ankle plantarflexor moment (95% CI -0.25 to -0.19) and ankle power (95% CI -0.89 to -0.60, were significantly lower in the Ponseti treated clubfeet compared to the healthy controls. No significant difference was found in ankle dorsiflexor and plantarflexor moment, and ankle power between clubfeet treated with surgery compared to the Ponseti method. Significance: Differences in gait kinetics are present when comparing Ponseti treated clubfeet with healthy controls. However, there is no significant difference between surgically and Ponseti treated clubfeet. These results give more insight in the possibilities of improving the gait pattern of patients treated for clubfeet.
The visual representation of Information System (IS) artefacts is an important aspect in the practical application of visual representations. However, important and known visual representation principles are often undervalued, which could lead to decreased effectiveness in using a visual representation. Decision Management (DM) is one field of study in which stakeholders must be able to utilize visual notations to model business decisions and underlying business logic, which are executed by machines, thus are IS artefacts. Although many DM notations currently exist, little research actually evaluates visual representation principles to identify the visual notations most suitable for stakeholders. In this paper, the Physics of Notations framework of Moody is operationalized and utilized to evaluate five different DM visual notations. The results show several points of improvement with regards to these visual notations. Furthermore, the results could show the authors of DM visual notations that well-known visual representation principles need to be adequately taken into account when defining or modifying DM visual notations.