In policing, Virtual Reality scenario-based training (VR SBT) is being explored to complement real-life scenario-based training (RL SBT). We investigated whether relevant training responses in VR SBT, namely heart rate (HR), level of physical activity, mental effort, and perceived stress, resemble those in RL SBT. Utilizing a within-subject study design, we investigated the training responses of 237 police officers of the Dutch National Police. We found that the maximum HR and average level of physical activity were significantly higher in RL SBT, whereas invested mental effort was significantly higher in VR SBT. No significant differences were found in average HR and perceived stress. We also found that perceived stress in VR was predicted by participants’ VR experiences such as engagement with VR and experience of negative effects, but not by participant characteristics. Participants’ mental effort in VR was predicted by their VR experiences and participant characteristics, particularly gaming frequency. In conclusion, VR SBT can elicit perceived stress, mental effort, and average HR that resemble or exceed responses in RL SBT, providing a promising tool to complement police training.
DOCUMENT
Virtual training systems provide highly realistic training environments for police. This study assesses whether a pain stimulus can enhance the training responses and sense of the presence of these systems. Police officers (n = 219) were trained either with or without a pain stimulus in a 2D simulator (VirTra V-300) and a 3D virtual reality (VR) system. Two (training simulator) × 2 (pain stimulus) ANOVAs revealed a significant interaction effect for perceived stress (p =.010, ηp2 =.039). Post-hoc pairwise comparisons showed that VR provokes significantly higher levels of perceived stress compared to VirTra when no pain stimulus is used (p =.009). With a pain stimulus, VirTra training provokes significantly higher levels of perceived stress compared to VirTra training without a pain stimulus (p <.001). Sense of presence was unaffected by the pain stimulus in both training systems. Our results indicate that VR training appears sufficiently realistic without adding a pain stimulus. Practitioner summary: Virtual police training benefits from highly realistic training environments. This study found that adding a pain stimulus heightened perceived stress in a 2D simulator, whereas it influenced neither training responses nor sense of presence in a VR system. VR training appears sufficiently realistic without adding a pain stimulus.
DOCUMENT
The After-Action Review (AAR) in Virtual Reality (VR) training for police provides new opportunities to enhance learning. We investigated whether perspectives (bird’s eye & police officer, bird’s eye & suspect, bird’s eye) and line of fire displayed in the AAR impacted the officers’ learning efficacy. A 3 x 2 ANOVA revealed a significant main effect of AAR perspectives. Post hoc pairwise comparisons showed that using a bird’s eye view in combination with the suspect perspective elicits significantly greater learning efficacy compared to using a bird’s eye view alone. Using the line of fire feature did not influence learning efficacy. Our findings show that the use of the suspect perspective during the AAR in VR training can support the learning efficacy of police officers.Practitioner summary: VR systems possess After-Action Review tools that provide objective performance feedback. This study found that reviewing a VR police training scenario from the bird’s eye view in combination with the suspect perspective enhanced police officers’ learning efficacy. Designing and applying the After-Action Review effectively can improve learning efficacy in VR.
DOCUMENT