Ship-source greenhouse gas (GHG) emissions could increase by up to 250% from 2012 levels by 2050 owing to increasing global freight volumes. Binding international legal agreements to regulate GHGs, however, are lacking as technical solutions remain expensive and crucial industrial support is absent. In 2003, IMO adopted Resolution A.963 (23) to regulate shipping CO2 emissions via technical, operational, and market-based routes. However, progress has been slow and uncertain; there is no concrete emission reduction target or definitive action plan. Yet, a full-fledged roadmap may not even emerge until 2023. In this policy analysis, we revisit the progress of technical, operational, and market-based routes and the associated controversies. We argue that 1) a performance-based index, though good-intentioned, has loopholes affecting meaningful CO2 emission reductions driven by technical advancements; 2) using slow steaming to cut energy consumption stands out among operational solutions thanks to its immediate and obvious results, but with the already slow speed in practice, this single source has limited emission reduction potential; 3) without a technology-savvy shipping industry, a market-based approach is essentially needed to address the environmental impact. To give shipping a 50:50 chance for contributing fairly and proportionately to keep global warming below 2°C, deep emission reductions should occur soon.
In this policy evaluation report, the results of the first 2 years of the Interreg funded ABCitiEs project are presented. In total 16 entrepreneurship collectives have been studied in 5 partner regions, i.e. Athens, Vilnius, Varazdin-Cakovec, Manchester and Amsterdam. The report contains an analysis of the cases and gives an overview of the most important opportunities and challenges faced by these cases. On the basis of these result, 4 policy directions have been selected in which improvement are considered most successful, i.e. access to funding, intermediaries, monitoring and experimental learning environments. Also, the report presents the action plans that have been formulated on the basis of these policy directions for the cities involved in this project. In the last 2 years of the project, project partners will implement these action plans in their respective cities.
MULTIFILE
During the COVID-19 pandemic, the bidirectional relationship between policy and data reliability has been a challenge for researchers of the local municipal health services. Policy decisions on population specific test locations and selective registration of negative test results led to population differences in data quality. This hampered the calculation of reliable population specific infection rates needed to develop proper data driven public health policy. https://doi.org/10.1007/s12508-023-00377-y
MULTIFILE
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.