Objectives: The strategy for dynamic postural stability might be different for male and female players. Additionally, dynamic and challenging tasks are recommended to measure differences in postural stability between injured and non-injured players. Therefore, the dynamic stability index (DSI) was developed which measures the ability of a player to maintain static balance after a dynamic task. The first aim of this study was to evaluate DSI differences between males and females for different jump directions. The second aim was to examine both preseason DSI differences between players with and without a history of ankle sprain, and between players with and without an ankle sprain during the subsequent season.Design: Prospective cohort design. Setting: Laboratory. Participants: 47 male (22.9 ± 3.9 y, 193.5 ± 7.9 cm, 87.1 ± 10.6) and 19 female (21.5 ± 2.9 y, 175.9 ± 7.3 cm, 69.0 ± 11.7 kg) sub-elite and elite basketball, volleyball and korfball players. Main outcome measures: Ankle sprain history was collected using a general injury history questionnaire. DSI on a single-leg hop-stabilization task measured preseason were calculated by using force plates and a Matlab program. Ankle sprains were reported during subsequent season. Results: Male players demonstrated larger DSI than female players on forward medial/lateral stability index (MLSI) (0.037± 0.007 vs 0.029 ± 0.005) and vertical stability index (VSI) (0.369 ± 0.056 vs 0.319 ± 0.034) (p < 0.001), diagonal VSI (0.363 ± 0.046 vs 0.311 ± 0.033) (p < 0.001), and lateral anterior/posterior stability index (APSI) (0.062 ± 0.015 vs 0.047 ± 0.011) and VSI (0.350 ± 0.054 vs 0.294 ± 0.037) (p < 0.001). Forward (0.384 ± 0.055 vs 0.335 ± 0.033), diagonal (0.379 ± 0.046 vs 0.328 ± 0.032) and lateral (0.368 ± 0.053 vs 0.313 ± 0.035) dynamic postural stability indices (DPSI) were larger for males (p < 0.001). No significant differences were found between players with and without a previous ankle sprain nor between players with and without an ankle sprain during subsequent season.
DOCUMENT
Introduction Negative pain-related cognitions are associated with persistence of low-back pain (LBP), but the mechanism underlying this association is not well understood. We propose that negative pain-related cognitions determine how threatening a motor task will be perceived, which in turn will affect how lumbar movements are performed, possibly with negative long-term effects on pain. Objective To assess the effect of postural threat on lumbar movement patterns in people with and without LBP, and to investigate whether this effect is associated with task-specific pain-related cognitions. Methods 30 back-healthy participants and 30 participants with LBP performed consecutive two trials of a seated repetitive reaching movement (45 times). During the first trial participants were threatened with mechanical perturbations, during the second trial participants were informed that the trial would be unperturbed. Movement patterns were characterized by temporal variability (CyclSD), local dynamic stability (LDE) and spatial variability (meanSD) of the relative lumbar Euler angles. Pain-related cognition was assessed with the task-specific ‘Expected Back Strain’-scale (EBS). A three-way mixed Manova was used to assess the effect of Threat, Group (LBP vs control) and EBS (above vs below median) on lumbar movement patterns. Results We found a main effect of threat on lumbar movement patterns. In the threat-condition, participants showed increased variability (MeanSDflexion-extension, p<0.000, η2 = 0.26; CyclSD, p = 0.003, η2 = 0.14) and decreased stability (LDE, p = 0.004, η2 = 0.14), indicating large effects of postural threat. Conclusion Postural threat increased variability and decreased stability of lumbar movements, regardless of group or EBS. These results suggest that perceived postural threat may underlie changes in motor behavior in patients with LBP. Since LBP is likely to impose such a threat, this could be a driver of changes in motor behavior in patients with LBP, as also supported by the higher spatial variability in the group with LBP and higher EBS in the reference condition.
LINK
A commentary on: Older adults can improve compensatory stepping with repeated postural perturbations by Dijkstra,B.W., Horak,F.B., Kamsma,Y.P.T., and Peterson,D.S.(2015).Front.AgingNeurosci. 7:201. doi:10.3389/fnagi.2015.00201. In sum, the results of Dijkstra etal. (2015) are of importance and significance for the field of falls prevention and stability control in aging. In particular, the work highlights the importance of multidirectional step or perturbation training, due to a lack of transfer across tasks. Whether this would hold for multidirectional gait perturbations is unclear, due to the influence of forward velocity during walking. Future work should explore different types, intensities and frequencies of perturbations in order to determine the most effective strategy for improving dynamic stability control in healthy older adults and inpatients with declined locomotor performance and increased falls risk. Finally, as Dijkstra etal. (2015) and previous studies found floor effects in the adaptation of young participants, further attempts should be made to appropriately scale perturbations to participant or groupability, in order to reliably compare adaptation across different groups.
DOCUMENT
Optimal postural control is an essential capacity in daily life and can be highly variable. The purpose of this study was to investigate if young people have the ability to choose the optimal postural control strategy according to the postural condition and to investigate if non-specific low back pain (NSLBP) influences the variability in proprioceptive postural control strategies. Young individuals with NSLBP (n = 106) and healthy controls (n = 50) were tested on a force plate in different postural conditions (i.e., sitting, stable support standing and unstable support standing). The role of proprioception in postural control was directly examined by means of muscle vibration on triceps surae and lumbar multifidus muscles. Root mean square and mean displacements of the center of pressure were recorded during the different trials. To appraise the proprioceptive postural control strategy, the relative proprioceptive weighting (RPW, ratio of ankle muscles proprioceptive inputs vs. back muscles proprioceptive inputs) was calculated. Postural robustness was significantly less in individuals with NSLBP during the more complex postural conditions (p < 0.05). Significantly higher RPW values were observed in the NSLBP group in all postural conditions (p < 0.05), suggesting less ability to rely on back muscle proprioceptive inputs for postural control. Therefore, healthy controls seem to have the ability to choose a more optimal postural control strategy according to the postural condition. In contrast, young people with NSLBP showed a reduced capacity to switch to a more multi-segmental postural control strategy during complex postural conditions, which leads to decreased postural robustness.
LINK
Background: In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the relationship between PS and PA has never been systematically reviewed. Objective: Our objective was to summarize the evidence regarding the relationship between PS in upright bipedal and unipedal standing and PA.
LINK
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
DOCUMENT
Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. Results: We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior–posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Discussion: Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Conclusion: Excessive arm swing significantly increases local dynamic stability of human gait.
DOCUMENT
Background: Development of more effective interventions for nonspecific chronic low back pain (LBP), requires a robust theoretical framework regarding mechanisms underlying the persistence of LBP. Altered movement patterns, possibly driven by pain-related cognitions, are assumed to drive pain persistence, but cogent evidence is missing. Aim: To assess variability and stability of lumbar movement patterns, during repetitive seated reaching, in people with and without LBP, and to investigate whether these movement characteristics are associated with painrelated cognitions. Methods: 60 participants were recruited, matched by age and sex (30 back-healthy and 30 with LBP). Mean age was 32.1 years (SD13.4). Mean Oswestry Disability Index-score in LBP-group was 15.7 (SD12.7). Pain-related cognitions were assessed by the ‘Pain Catastrophizing Scale’ (PCS), ‘Pain Anxiety Symptoms Scale’ (PASS) and the task-specific ‘Expected Back Strain’ scale(EBS). Participants performed a seated repetitive reaching movement (45 times), at self-selected speed. Lumbar movement patterns were assessed by an optical motion capture system recording positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion-extension, lateralbending, axial-rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Differences in movement patterns, between people with and without LBP and with high and low levels of pain-related cognitions, were assessed with factorial MANOVA. Results: We found no main effect of LBP on variability and stability, but there was a significant interaction effect of group and EBS. In the LBP-group, participants with high levels of EBS, showed increased MeanSDlateral-bending (p = 0.004, η2 = 0.14), indicating a large effect. MeanSDaxial-rotation approached significance (p = 0.06). Significance: In people with LBP, spatial variability was predicted by the task-specific EBS, but not by the general measures of pain-related cognitions. These results suggest that a high level of EBS is a driver of increased spatial variability, in participants with LBP.
DOCUMENT
Literature highlights the need for research on changes in lumbar movement patterns, as potential mechanisms underlying the persistence of low-back pain. Variability and local dynamic stability are frequently used to characterize movement patterns. In view of a lack of information on reliability of these measures, we determined their within- and between-session reliability in repeated seated reaching. Thirty-six participants (21 healthy, 15 LBP) executed three trials of repeated seated reaching on two days. An optical motion capture system recorded positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion–extension, lateral bending, axial rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Reliability was evaluated using intraclass correlation coefficients (ICC), coefficients of variation (CV) and Bland-Altman plots. Sufficient reliability was defined as an ICC ≥ 0.5 and a CV < 20%. To determine the effect of number of repetitions on reliability, analyses were performed for the first 10, 20, 30, and 40 repetitions of each time series. MeanSD, CyclSD, and the LDE had moderate within-session reliability; meanSD: ICC = 0.60–0.73 (CV = 14–17%); CyclSD: ICC = 0.68 (CV = 17%); LDE: ICC = 0.62 (CV = 5%). Between-session reliability was somewhat lower; meanSD: ICC = 0.44–0.73 (CV = 17–19%); CyclSD: ICC = 0.45–0.56 (CV = 19–22%); LDE: ICC = 0.25–0.54 (CV = 5–6%). MeanSD, CyclSD and the LDE are sufficiently reliable to assess lumbar movement patterns in single-session experiments, and at best sufficiently reliable in multi-session experiments. Within-session, a plateau in reliability appears to be reached at 40 repetitions for meanSD (flexion–extension), meanSD (axial-rotation) and CyclSD.
MULTIFILE
Objective: This exploratory study investigated to what extent gait characteristics and clinical physical therapy assessments predict falls in chronic stroke survivors. Design: Prospective study. Subjects: Chronic fall-prone and non-fall-prone stroke survivors. Methods: Steady-state gait characteristics were collected from 40 participants while walking on a treadmill with motion capture of spatio-temporal, variability, and stability measures. An accelerometer was used to collect daily-life gait characteristics during 7 days. Six physical and psychological assessments were administered. Fall events were determined using a “fall calendar” and monthly phone calls over a 6-month period. After data reduction through principal component analysis, the predictive capacity of each method was determined by logistic regression. Results: Thirty-eight percent of the participants were classified as fallers. Laboratory-based and daily-life gait characteristics predicted falls acceptably well, with an area under the curve of, 0.73 and 0.72, respectively, while fall predictions from clinical assessments were limited (0.64). Conclusion: Independent of the type of gait assessment, qualitative gait characteristics are better fall predictors than clinical assessments. Clinicians should therefore consider gait analyses as an alternative for identifying fall-prone stroke survivors.
DOCUMENT