Background: Differential learning (DL) is a motor learning method characterized by high amounts of variability during practice and is claimed to provide the learner with a higher learning rate than other methods. However, some controversy surrounds DL theory, and to date, no overview exists that compares the effects of DL to other motor learning methods.Objective: To evaluate the effectiveness of DL in comparison to other motor learning methods in the acquisition and retention phase.Design: Systematic review and exploratory meta-analysis.Methods: PubMed (MEDLINE), Web of Science, and Google Scholar were searched until February 3, 2020. To be included, (1) studies had to be experiments where the DL group was compared to a control group engaged in a different motor learning method (lack of practice was not eligible), (2) studies had to describe the effects on one or more measures of performance in a skill or movement task, and (3) the study report had to be published as a full paper in a journal or as a book chapter.Results: Twenty-seven studies encompassing 31 experiments were included. Overall heterogeneity for the acquisition phase (post-pre; I2 = 77%) as well as for the retention phase (retention-pre; I2 = 79%) was large, and risk of bias was high. The meta-analysis showed an overall small effect size of 0.26 [0.10, 0.42] in the acquisition phase for participants in the DL group compared to other motor learning methods. In the retention phase, an overall medium effect size of 0.61 [0.30, 0.91] was observed for participants in the DL group compared to other motor learning methods.Discussion/Conclusion: Given the large amount of heterogeneity, limited number of studies, low sample sizes, low statistical power, possible publication bias, and high risk of bias in general, inferences about the effectiveness of DL would be premature. Even though DL shows potential to result in greater average improvements between pre- and post/retention test compared to non-variability-based motor learning methods, more high-quality research is needed before issuing such a statement. For robust comparisons on the relative effectiveness of DL to different variability-based motor learning methods, scarce and inconclusive evidence was found.
Research of non-contact anterior cruciate ligament (ACL) inj1ury risk aims to identify modifiable risk factors that are linked to the mechanisms of injury. Information from these studies is then used in the development of injury prevention programmes. However, ACL injury risk research often leans towards methods with three limitations: 1) a poor preservation of the athlete-environment rela- tionship that limits the generalisability of results, 2) the use of a strictly biomechanical approach to injury causation that is incom- plete for the description of injury mechanisms, 3) and a reductionist analysis that neglects profound information regarding human movement. This current opinion proposes three principles from an ecological dynamics perspective that address these limitations. First, it is argued that, to improve the generalisability of findings, research requires a well-preserved athlete-environment relation- ship. Second, the merit of including behaviour and the playing situation in the model of injury causation is presented. Third, this paper advocates that research benefits from conducting non- reductionist analysis (i.e., more holistic) that provides profound information regarding human movement. Together, these princi- ples facilitate an ecological dynamics approach to injury risk research that helps to expand our understanding of injury mechan- isms and thus contributes to the development of preventative measures.
BACKGROUND: Work-related musculoskeletal disorders (WMSDs) are a key topic in occupational health. In the primary prevention of these disorders, interventions to minimize exposure to work-related physical risk factors are widely advocated. Besides interventions aimed at the work organisation and the workplace, interventions are also aimed at the behaviour of workers, the so-called individual working practice (IWP). At the moment, no conceptual framework for interventions for IWP exists. This study is a first step towards such a framework.METHODS: A scoping review was carried out starting with a systematic search in Ovid Medline, Ovid Embase, Ovid APA PsycInfo, and Web of Science. Intervention studies aimed at reducing exposure to physical ergonomic risk factors involving the worker were included. The content of these interventions for IWP was extracted and coded in order to arrive at distinguishing and overarching categories of these interventions for IWP.RESULTS: More than 12.000 papers were found and 110 intervention studies were included, describing 810 topics for IWP. Eventually eight overarching categories of interventions for IWP were distinguished: (1) Workplace adjustment, (2) Variation, (3) Exercising, (4) Use of aids, (5) Professional skills, (6) Professional manners, (7) Task content & task organisation and (8) Motoric skills.CONCLUSION: Eight categories of interventions for IWP are described in the literature. These categories are a starting point for developing and evaluating effective interventions performed by workers to prevent WMSDs. In order to reach consensus on these categories, an international expert consultation is a necessary next step.KEYWORDS: Work related risk factors, Occupational training, Ergonomic interventions, Musculoskeletal diseases, Prevention and control