Augmented Play Spaces (APS) are (semi-) public environments where playful interaction isfacilitated by enriching the existing environment with interactive technology. APS canpotentially facilitate social interaction and physical activity in (semi-)public environments. Incontrolled settings APS show promising effects. However, people’s willingness to engagewith APSin situ, depends on many factors that do not occur in aforementioned controlledsettings (where participation is obvious). To be able to achieve and demonstrate thepositive effects of APS when implemented in (semi-)public environments, it is important togain more insight in how to motivate people to engage with them and better understandwhen and how those decisions can be influenced by certain (design) factors. TheParticipant Journey Map (PJM) was developed following multiple iterations. First,based on related work, and insights gained from previously developed andimplemented APS, a concept of the PJM was developed. Next, to validate and refinethe PJM, interviews with 6 experts with extensive experience with developing andimplementing APS were conducted. Thefirst part of these interviews focused oninfluential (design) factors for engaging people into APS. In the second part, expertswere asked to provide feedback on thefirst concept of the PJM. Based on the insightsfrom the expert interviews, the PJM was adjusted and refined. The Participant JourneyMap consists of four layers: Phases, States, Transitions and Influential Factors. There aretwo overarchingphases:‘Onboarding’and‘Participation’and 6statesa (potential)participant goes through when engaging with an APS:‘Transit,’‘Awareness,’‘Interest,’‘Intention,’‘Participation,’‘Finishing.’Transitionsindicate movements between states.Influential factorsare the factors that influence these transitions. The PJM supportsdirections for further research and the design and implementation of APS. Itcontributes to previous work by providing a detailed overview of a participant journeyand the factors that influence motivation to engage with APS. Notable additions are thedetailed overview of influential factors, the introduction of the states‘Awareness,’‘Intention’and‘Finishing’and the non-linear approach. This will support taking intoaccount these often overlooked, key moments in future APS research and designprojects. Additionally, suggestions for future research into the design of APS are given.
DOCUMENT
Stormwater flooding and thermal stresses of citizens are two important phenomena for most of the dense urban area. Due to the climate change, these two phenomena will occur more frequently and cause serious problems. Therefore, the sectors for public health and disaster management should be able to assess the vulnerability to stormwater flooding and thermal stress. To achieve this goal, two cities in different climate regions and with different urban context have been selected as the pilot areas, i.eY., Tainan, Taiwan and Groningen, Netherlands. Stormwater flooding and thermal stress maps will be produced for both cities for further comparison. The flooding map indicates vulnerable low lying areas, where the thermal stress map indicates high Physiological Equivalent Temperature (PET) values (thermal comfort) in open areas without shading. The combined map indicates the problem areas of flooding and thermal stress and can be used by urban planners and other stakeholders to improve the living environment.
DOCUMENT
Comprehensive understanding of the merits of bottom-up urban development is lacking, thus hampering and complicating associated collaborative processes. Therefore, and given the assumed relevancies, we mapped the social, environmental and economic values generated by bottom-up developments in two Dutch urban areas, using theory-based evaluation principles. These evaluations raised insights into the values, beneficiaries and path dependencies between successive values, confirming the assumed effect of placemaking accelerating further spatial developments. It also revealed broader impacts of bottom-up endeavors, such as influences on local policies and innovations in urban development.
MULTIFILE
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. While extensive attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC.
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.