Sustainable urban drainage systems (SuDS) or nature-based solutions (NBSs) are widely implemented to collect, store and infiltrate stormwater. The buildup of pollutants is expected in NBSs, and Dutch guidelines advise monitoring the topsoil of bio-swales every 5 years. In the Netherlands, almost every municipality has implemented bio-swales. Some municipalities have over 300 bio-swales, and monitoring all their NBSs is challenging due to cost and capacity. In this study, 20 locations where bio-swales with ages ranging between 10 and 20 years old were selected for a field investigation to answer the following question: is the soil quality of bio-swales after 10 years still acceptable? Portable XRF instruments were used to detect potential toxic elements (PTEs) for in situ measurements. The results showed that for copper (Cu), zinc (Zn) and lead (Pb), 30%, 40% and 25% of the locations show values above the threshold and 5%, 20% and 0% above the intervention threshold, meaning immediate action should be taken. The results are of importance for stakeholders in (inter)national cities that implement, maintain, and monitor NBS. Knowledge of stormwater and soil quality related to long-term health risks from NBS enables urban planners to implement the mostappropriate stormwater management strategies. With these research results, the Dutch guidelines for design, construction, and maintenance can be updated, and stakeholders are reminded that the monitoring of green infrastructure should be planned and executed every 5 years.
DOCUMENT
Stormwater runoff can contain high amounts of Potential Toxic Elements (PTE) as heavy metals. PTE can have negative and direct impact on the quality of surface waters and groundwater. The European Water Framework Directive (WFD) demands enhanced protection of the aquatic environment. As a consequence, the WFD requires municipalities and water authorities to address the emissions from drainage systems adequately and to take action when these emissions affect the quality of receiving waters together with mitigating the quantity challenges in a changing climate (floodings and drought). NBS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. Applying Nature-Based Solutions (NBS), Sustainable Urban Drainage Systems (SuDS) or Water Sensitive Urban Design (WSUD) are known to improve the water quality in the urban water cycle. The efficiency of NBS, such as the capability of bio swales to trap PTE, highly depends on the dimensions of the facility and on its implementation in the field [Woods Ballard, B et al, 2015]. For the determination of the removal efficiency of NBS information about stormwater quality and characteristics is essential. Acquiring the following information is strongly advised [Boogaard et al. 2014]:1. stormwater quality levels (method: stormwater quality database);2. location of NBS (method: mapping NBS in international database);3. behaviour of pollutants (method: cost effective mapping pollutants in the field). Stormwater quality contains pollutants as heavy metal in higher concentrations than water quality standards dictate. Over 500 locations with bio swales are mapped in the Netherlands which is a fraction of stormwater infiltration locations implemented in 20 years’ time. Monitoring of all these NBS would acquire high capacity and budget from the Dutch resources. This quick scan XRF mapping methodology of topsoil will indicate if the topsoil is polluted and whether the concentrations exceed national or international standards. This was only the case in one of the youngest pilots in Utrecht indicating that there are multiple factors other than age (traffic intensity, use of materials, storage volume, maintenance, run off quality, etc.). Several locations show unacceptable levels, above the national thresholds for pollutants where further research on the prediction of these levels in relation to multiple factors will be the subject of future research.The results of study are shared in 2 national workshops and valued as of great importance for all stakeholders in (inter)national cities that are involved in implementation of NBS for climate adaptation. The Dutch research results will be used to update (inter-)national guidelines for design, construction and maintenance of infiltration facilities this year. Stormwater managers are strongly advised to use this quick scan method within the first 10 years after implementation of swales to map possible pollution of the top soil and prevent pollution to spread to the groundwater in urban areas.
DOCUMENT
Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 m) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.
DOCUMENT
MULTIFILE
DOCUMENT
Malmö is well known within the field of urban hydrology, as the city was a pioneer in integrated water management (Stahre 2008). In 1998 the Augustenborg neighbourhood was refurbished due to its reoccurring problems with flooding anddamage caused by water (Niemczynowicz 1999). The project “Ekostaden” (Eco-city) included many initiatives implementing nature-based solutions (NBS), such as swales and rain gardens for infiltrating surface (storm) water into the ground (Climate Adapt 2016) (Figure 1). International stakeholders want to know if these NBS still function satisfactorily after 20 years and what we can learn from the “Augustenborg strategy” and apply in other parts of the world. To quote the German philosopher Georg Wilhelm Friedrich Hegel, “we learn from history that we do not learn from history.” Augustenborg is an ideal location to demonstratethe sustainability of NBS, test the functionality for infiltration of surface water in swales, map the build-up of potential toxic elements (PTE), and test the water quality after 20 years operation. This evaluation is done in 2019 with theinternational, participatory and multidisciplinary method ‘ClimateCafé and the results are presented at the international seminar Cities, rain and risk,June 2019 in Malmö (Boogaard et al. 2019). ClimateCafé is a field education concept involving different fields of science and practice for capacity building in climate change adaptation. Over 20 ClimateCafés have already been carriedout around the globe (Africa, Asia, Europe), where different tools and methods have been demonstrated to evaluate climate adaptation. The 25th edition of ClimateCafé took place in Malmö, Sweden, in June 2019 and focussed on the Eco-city of Augustenborg. The main research question - “Are the NBS in Augustenborg still functioning satisfactorily?”- was answered by interviews, collecting data of water quality, pollution, NBS and heat stress mapping, and measuring infiltration rates (Boogaard et al. 2020).
DOCUMENT
ClimateCafé is a field education concept involving dierent fields of science and practice for capacity building in climate change adaptation. This concept is applied on the eco-city of Augustenborg in Malmö, Sweden, where Nature-Based Solutions (NBS) were implemented in 1998.ClimateCafé Malmö evaluated these NBS with 20 young professionals from nine nationalities and seven disciplines with a variety of practical tools. In two days, 175 NBS were mapped and categorised in Malmö. Results show that the selected green infrastructure have a satisfactory infiltration capacity and low values of potential toxic element pollutants after 20 years in operation. The question “Is capacity building achieved by interdisciplinary field experience related to climate change adaptation?” was answered by interviews, collecting data of water quality, pollution, NBS and heat stress mapping, and measuring infiltration rates, followed by discussion. The interdisciplinary workshops with practical tools provide a tangible value to the participants and are needed to advance sustainabilityeorts. Long term lessons learnt from Augustenborg will help stormwater managers within planning of NBS. Lessons learned from this ClimateCafé will improve capacity building on climate change adaptation in the future. This paper oers a method and results to prove the German philosopher Friedrich Hegel wrong when he opined that “we learn from history that we do not learn from history”
DOCUMENT
Schepen in moeilijkheden op zee leveren vaak besluitvormingsproblemen op tussen de scheepseigenaar/kapitein en de kuststaat. Kuststaten en met name de lokale overheden willen een probleem schip graag zo ver mogelijk weg sturen van hun gebied terwijl de eigenaar/kapitein zijn schip graag zo snel mogelijk naar de kust, een beschutte locatie of haven wil brengen. Het onderzoek geeft onderbouwing voor de besluitvorming rond schepen in moeilijkheden, zowel voor de zeescheepvaart als de betrokken besluitvormers van oeverstaten. Het product van het project is: een, op uitgewerkte scenario’s per scheepstype en lading gebaseerde besluitvormingsprocedure voor zeeschepen in moeilijkheden
DOCUMENT
Abstract Specialist oncology nurses (SONs) have the potential to play a major role in monitoring and reporting adverse drug reactions (ADRs); and reduce the level of underreporting by current healthcare professionals. The aim of this study was to investigate the long term clinical and educational efects of real-life pharmacovigilance education intervention for SONs on ADR reporting. This prospective cohort study, with a 2-year follow-up, was carried out in the three postgraduate schools in the Netherlands. In one of the schools, the prescribing qualifcation course was expanded to include a lecture on pharmacovigilance, an ADR reporting assignment, and group discussion of self-reported ADRs (intervention). The clinical value of the intervention was assessed by analyzing the quantity and quality of ADR-reports sent to the Netherlands Pharmacovigilance Center Lareb, up to 2 years after the course and by evaluating the competences regarding pharmacovigilance of SONs annually. Eighty-eight SONs (78% of all SONs with a prescribing qualifcation in the Netherlands) were included. During the study, 82 ADRs were reported by the intervention group and 0 by the control group. This made the intervention group 105 times more likely to report an ADR after the course than an average nurse in the Netherlands. This is the frst study to show a signifcant and relevant increase in the number of well-documented ADR reports after a single educational intervention. The real-life pharmacovigilance educational intervention also resulted in a long-term increase in pharmacovigilance competence. We recommend implementing real-life, context- and problem-based pharmacovigilance learning assignments in all healthcare curricula.
MULTIFILE
This project builds upon a collaboration which has been established since 15 years in the field of social work between teachers and lecturers of Zuyd University, HU University and Elte University. Another network joining this project was CARe Europe, an NGO aimed at improving community care throughout Europe. Before the start of the project already HU University, Tallinn Mental Health Centre and Kwintes were participating in this network. In the course of several international meetings (e.g. CARe Europe conference in Prague in 2005, ENSACT conferences in Dubrovnik in 2009, and Brussels in April 2011, ESN conference in Brussels in March 2011), and many local meetings, it became clear that professionals in the social sector have difficulties to change current practices. There is a great need to develop new methods, which professionals can use to create community care.
DOCUMENT