Droop control is used for power management in DC grids. Based on the level of the DC grid voltage, the amount of power regulated to or from the appliance is regulated such, that power management is possible. The Universal 4 Leg is a laboratory setup for studying the functionality of a grid manager for power management. It has four independent outputs that can be regulated with pulse width modulation to control the power flow between the DC grid and for example, a rechargeable battery, solar panel or any passive load like lighting or heating.
Instead of using a passive AC power grid for low power applications, this paper describes a smart plug for DC networks that is capable of providing the correct power to a device (up to 100W) and that allows for communication between different plugs and monitoring of energy consumption across the DC network using the Ethernet protocol in conjunction with a signal modulator to adapt the signals to the DC network. The ability to monitor consumption on a device-per-device basis allows for closer monitoring of in-house energy use and provides an easily scalable platform to monitor consumption at a macro level. In order to make this paper attractive for the consumer market and easily integrable with existing consumer devices, a generally compatible solution is needed. To meet these demands and to take advantage of the trend of charging consumer devices through USB, we opted for the recently adapted USB Power Delivery standard. This standard allows devices to communicate with the plug and demand a specific voltage and current needed for the device to operate. The purpose of this paper is to give the reader insight in the development of a proof of concept of the smart DC/DC power plug. 10.1109/DUE.2014.6827761
The circular economy (CE) is heralded as reducing material use and emissions while providing more jobs and growth. We explored this narrative in a series of expert workshops, basing ourselves on theories, methods and findings from science fields such as global environmental input-output analysis, business modelling, industrial organisation, innovation sciences and transition studies. Our findings indicate that this dominant narrative suffers from at least three inconvenient truths. First, CE can lead to loss of GDP. Each doubling of product lifetimes will halve the related industrial production, while the required design changes may cost little. Second, the same mechanism can create losses of production jobs. This may not be compensated by extra maintenance, repair or refurbishing activities. Finally, ‘Product-as-a-Service’ business models supported by platform technologies are crucial for a CE transition. But by transforming consumers from owners to users, they lose independence and do not share in any value enhancement of assets (e.g., houses). As shown by Uber and AirBNB, platforms tend to concentrate power and value with providers, dramatically affecting the distribution of wealth. The real win-win potential of circularity is that the same societal welfare may be achieved with less production and fewer working hours, resulting in more leisure time. But it is perfectly possible that powerful platform providers capture most added value and channel that to their elite owners, at the expense of the purchasing power of ordinary people working fewer hours. Similar undesirable distributional effects may occur at the global scale: the service economies in the Global North may benefit from the additional repair and refurbishment activities, while economies in the Global South that are more oriented towards primary production will see these activities shrink. It is essential that CE research comes to grips with such effects. Furthermore, governance approaches mitigating unfair distribution of power and value are hence essential for a successful circularity transition.
LINK
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
The project aims to improve palliative care in China through the competence development of Chinese teachers, professionals, and students focusing on the horizontal priority of digital transformation.Palliative care (PC) has been recognised as a public health priority, and during recent years, has seen advances in several aspects. However, severe inequities in the access and availability of PC worldwide remain. Annually, approximately 56.8 million people need palliative care, where 25.7% of the care focuses on the last year of person’s life (Connor, 2020).China has set aims for reaching the health care standards of the developed countries by 2030 through the Healthy China Strategy 2030, where one of the improvement areas in health care includes palliative care, thus continuing the previous efforts.The project provides a constructive, holistic, and innovative set of actions aimed at resulting in lasting outcomes and continued development of palliative care education and services. Raising the awareness of all stakeholders on palliative care, including the public, is highly relevant and needed. Evidence based practice guidelines and education are urgently required for both general and specialised palliative care levels, to increase the competencies for health educators, professionals, and students. This is to improve the availability and quality of person-centered palliative care in China. Considering the aging population, increase in various chronic illnesses, the challenging care environment, and the moderate health care resources, competence development and the utilisation of digitalisation in palliative care are paramount in supporting the transition of experts into the palliative care practice environment.General objective of the project is to enhance the competences in palliative care in China through education and training to improve the quality of life for citizens. Project develops the competences of current and future health care professionals in China to transform the palliative care theory and practice to impact the target groups and the society in the long-term. As recognised by the European Association for Palliative Care (EAPC), palliative care competences need to be developed in collaboration. This includes shared willingness to learn from each other to improve the sought outcomes in palliative care (EAPC 2019). Since all individuals have a right to health care, project develops person-centered and culturally sensitive practices taking into consideration ethics and social norms. As concepts around palliative care can focus on physical, psychological, social, or spiritual related illnesses (WHO 2020), project develops innovative pedagogy focusing on evidence-based practice, communication, and competence development utilising digital methods and tools. Concepts of reflection, values and views are in the forefront to improve palliative care for the future. Important aspects in project development include health promotion, digital competences and digital health literacy skills of professionals, patients, and their caregivers. Project objective is tied to the principles of the European Commission’s (EU) Digital Decade that stresses the importance of placing people and their rights in the forefront of the digital transformation, while enhancing solidarity, inclusion, freedom of choice and participation. In addition, concepts of safety, security, empowerment, and the promotion of sustainable actions are valued. (European Commission: Digital targets for 2030).Through the existing collaboration, strategic focus areas of the partners, and the principles of the call, the PalcNet project consortium was formed by the following partners: JAMK University of Applied Sciences (JAMK ), Ramon Llull University (URL), Hanze University of Applied Sciences (HUAS), Beijing Union Medical College Hospital (PUMCH), Guangzhou Health Science College (GHSC), Beihua University (BHU), and Harbin Medical University (HMU). As project develops new knowledge, innovations and practice through capacity building, finalisation of the consortium considered partners development strategy regarding health care, (especially palliative care), ability to create long-term impact, including the focus on enhancing higher education according to the horizontal priority. In addition, partners’ expertise and geographical location was also considered important to facilitate long-term impact of the results.Primary target groups of the project include partner country’s (China) staff members, teachers, researchers, health care professionals and bachelor level students engaging in project implementation. Secondary target groups include those groups who will use the outputs and results and continue in further development in palliative care upon the lifetime of the project.
In 2024, the Dutch government set a new plan for offshore wind farms to become the Netherlands' largest power source by 2032, aiming for 21 GW of installed capacity. By 2050, they expect between 38 and 72 GW of offshore wind power to meet climate-neutral energy goals. Achieving this depends heavily on efficient wind turbines (WTs) operation, but WTs face issues like cavitation, bird strikes, and corrosion, all of which reduce energy output. Regular Inspection and Maintenance (I&M) of WTs is crucial but remains underdeveloped in current wind farms. Presently, I&M tasks are done by on-site workers using rope access, which is time-consuming, costly, and dangerous. Moreover, weather conditions and personnel availability further hinder the efficiency of these operations. The number of operational WTs is expected to rise in the coming years, while the availability of service personnel will keep on declining, highlighting the need for safer and more cost-effective solutions. One promising innovation is the use of aerial robots, or drones, for I&M tasks. Recent developments show that they can perform tasks requiring physical interaction with the environment, such as WT inspections and maintenance. However, the current design of drones is often task-specific, making it financially unfeasible for small and medium-sized enterprises (SMEs) – providing services in WT inspection and maintenance- to adopt. Together with knowledge institutes, SMEs and innovation clusters, this project addresses these urgent challenges by exploring the question of how to develop a modular aerial robot that can be easily and intuitively deployed in offshore environments for inspecting and maintaining WTs to facilitate SMEs adoption of this technology? The goal is to create a modular drone that can be equipped with various tools for different tasks, reducing financial burdens for SMEs, improving worker safety, and facilitating efficient green energy production to support the renewable energy transition.