Problems of energy security, diversification of energy sources, and improvement of technologies (including alternatives) for obtaining motor fuels have become a priority of science and practice today. Many scientists devote their scientific research to the problems of obtaining effective brands of alternative (reformulated) motor fuels. Our scientific school also deals with the problems of the rational use of traditional and alternative motor fuels.This article focused on advances in motor fuel synthesis using natural, associated, or biogas. Different raw materials are used for GTL technology: biomass, natural and associated petroleum gases. Modern approaches to feed gas purification, development of Gas-to-Liquid-technology based on Fischer–Tropsch synthesis, and liquid hydrocarbon mixture reforming are considered.Biological gas is produced in the process of decomposition of waste (manure, straw, grain, sawdust waste), sludge, and organic household waste by cellulosic anaerobic organisms with the participation of methane fermentation bacteria. When 1 tonne of organic matter decomposes, 250 to 500–600 cubic meters of biogas is produced. Experts of the Bioenergy Association of Ukraine estimate the volume of its production at 7.8 billion cubic meters per year. This is 25% of the total consumption of natural gas in Ukraine. This is a significant raw material potential for obtaining liquid hydrocarbons for components of motor fuels.We believe that the potential for gas-to-liquid synthetic motor fuels is associated with shale and coalfield gases (e.g. mine methane), methane hydrate, and biogas from biomass and household waste gases.
This article explores the applicability of smart grid concepts to the Dutch gas network by reflecting on the experience of the electricity sector.
GasTerra is, als exclusieve verkoper van het gas uit de Groningse bodem, een cruciale ketenpartner in de energiesector in Nederland. Om deze strategische positie goed te kunnen vormgeven wil GasTerra de beeldvorming in de Nederlandse samenleving over gas en GasTerra analyseren. Men wil inzicht in of en hoe de rol van gas in de Nederlandse samenleving besproken wordt. GasTerra vraagt daartoe naar een verdiepende analyse van de vorming van de publieke opinie rondom de positie en het imago van gas en GasTerra in het bijzonder. Het lectoraat Communication & Sustainable Society van de Hanzehogeschool Groningen heeft opdracht gekregen onderzoek te verrichten. Een verdiepende discoursanalyse naar de kracht en werking van frames moet inzicht geven en richting geven aan de tone of voice die GasTerra hanteert in haar communicatiestrategie. Ook is er een Rapid Evidence Assessment uitgevoerd om inzicht te verkrijgen in de meest actuele wetenschappelijke stand van zaken rond het gasdebat en opvattingen daaromtrent.
The transition to a circular, resource efficient construction sector is crucial to achieve climate neutrality in 2050. Construction stillaccounts for 50% of all extracted materials, is responsible for 3% of EU’s waste and for at least 12% of Green House Gas emissions.However, this transition is lagging, the impact of circular building materials is still limited.To accelerate the positive impact of circulair building materials Circular Trust Building has analyzed partners’ circular initiatives andidentified 4 related critical success factors for circularity, re-use of waste, and lower emissions:1. Level of integration2. Organized trust3. Shared learning4. Common goalsScaling these success factors requires new solutions, skills empowering stakeholders, and joint strategies and action plans. Circular TrustBuilding will do so using the innovative sociotechnical transition theory:1.Back casting: integrating stakeholders on common goals and analyzing together what’s needed, what’s available and who cancontribute what. The result is a joint strategy and xx regional action plans.2.Agile development of missing solutions such a Circular Building Trust Framework, Regional Circular Deals, connecting digitalplatforms matching supply and demand3.Increasing institutional capacity in (de-)construction, renovation, development and regulation: trained professionals move thetransition forward.Circular Trust Building will demonstrate these in xx pilots with local stakeholders. Each pilot will at least realize a 25% reduction of thematerial footprint of construction and renovation
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.