Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.
DOCUMENT
Wind and solar power generation will continue to grow in the energy supply of the future, but its inherent variability (intermittency) requires appropriate energy systems for storing and using power. Storage of possibly temporary excess of power as methane from hydrogen gas and carbon dioxide is a promising option. With electrolysis hydrogen gas can be generated from (renewable) power. The combination of such hydrogen with carbon dioxide results in the energy carrier methane that can be handled well and may may serve as carbon feedstock of the future. Biogas from biomass delivers both methane and carbon dioxide. Anaerobic microorganisms can make additional methane from hydrogen and carbon dioxide in a biomethanation process that compares favourably with its chemical counterpart. Biomethanation for renewable power storage and use makes appropriate use of the existing infrastructure and knowledge base for natural gas. Addition of hydrogen to a dedicated biogas reactor after fermentation optimizes the biomethanation conditions and gives maximum flexibility. The low water solubility of hydrogen gas limits the methane production rate. The use of hollow fibers, nano-bubbles or better-tailored methane-forming microorganisms may overcome this bottleneck. Analyses of patent applications on biomethanation suggest a lot of freedom to operate. Assessment of biomethanation for economic feasibility and environmental value is extremely challenging and will require future data and experiences. Currently biomethanation is not yet economically feasible, but this may be different in the energy systems of the near future.
DOCUMENT
This study presents a methodology designed to optimize various parameters of each access point within a Multiple-Input Single-Output (MISO) Visible Light Communication (VLC) system. The primary objective is to enhance both power and spectral efficiencies. A MISO-VLC model is presented based on experimental evaluations and a problem formulation considering intermodulation distortions based on Orthogonal Frequency Division Multiplexing modulation. A Hybrid Multi-Objective Optimization (HMO) approach is proposed, combining the Non-Sorting Genetic Algorithm III (NSGA-III) and the Multi-objective Grey Wolf Optimization (MOGWO). The proposed HMO's success was validated by a 66 % reduction in transmitted power, maintaining the Error Vector Magnitude (EVM) performance metrics even at lower power transmission levels and minimizing the guard band to its lower bound.
DOCUMENT
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT
The performance of a visible light communication (VLC) system based on power domain non-orthogonal multiple access (PD-NOMA) is experimentally evaluated in this paper. The simplicity of the adopted non-orthogonal scheme is provided by the fixed power allocation method at the transmitter and the single one-tap equalization executed before the successive interference cancellation at the receiver. The experimental results proved the successful transmission of the PD-NOMA scheme with three users in VLC links of up to 2.5 m, after a proper choice of the optical modulation index. All users achieved error-vector magnitude (EVM) performances below FEC limits in all evaluated transmission distances. At 2.5 m, the user with the best performance reaches an EVM = 2.3 %.
DOCUMENT
Energy conservation is crucial in wireless ad hoc sensor network design to increase network lifetime. Since communication consumes a major part of the energy used by a sensor node, efficient communication is important. Topology control aims at achieving more efficient communication by dropping links and reducing interference among simultaneous transmissions by adjusting the nodes’ transmission power. Since dropping links make a network more susceptible to node failure, a fundamental problem in wireless sensor networks is to find a communication graph with minimum interference and minimum power assignment aiming at an induced topology that can satisfy fault-tolerant properties. In this paper, we examine and propose linear integer programming formulations and a hybrid meta-heuristic GRASP/VNS (Greedy Randomized Adaptive Search Procedure/Variable Neighborhood Search) to determine the transmission power of each node while maintaining a fault-tolerant network and simultaneously minimize the interference and the total power consumption. Optimal biconnected topologies for moderately sized networks with minimum interference and minimum power are obtained using a commercial solver. We report computational simulations comparing the integer programming formulations and the GRASP/VNS, and evaluate the effectiveness of three meta-heuristics in terms of the tradeoffs between computation time and solution quality. We show that the proposed meta-heuristics are able to find good solutions for sensor networks with up to 400 nodes and that the GRASP/VNS was able to systematically find the best lower bounds and optimal solutions.
DOCUMENT
What is known in scientific literature at this point in time about the effects of the measures against the transmission of the coronavirus and what is the meaning of this for the organisers of events?
DOCUMENT
Contribution to the conference: International Conference on New Pathways for Community Energy and Storage, 6-7 June 2019ABSTRACTThe community renewable energy is often seen as the way to address the societal challenge of energy transition. Many scholars foresee a key role for community energy in accelerating of the energy transition from fossil to renewable energy sources. For example, some authors investigated the transformative role of community renewable energy in the energy transition process (Seyfang and Smith, 2007; Seyfang and Haxeltine 2012; Seyfang et al. 2013; Seyfang et al. 2014; Smith et al. 2017; Martiskainen, 2017; Ruggiero et al. 2018; Hasanov and Zuidema, 2018; de Boer et al. 2018). Recognising the importance of community energy many scholars studied different internal and external conditions that contribute or hinder the success of local renewable energy initiatives (Walker et al. 2007; Bomberg and McEwen, 2012; Seyfang et al. 2013; Wirth, 2014; Hasanov and Zuidema, 2018; Ruggiero et al. 2018). One of such conditions contributing to the success of community energy initiatives is the capacity to adopt and utilize new technologies, for example, in the area of energy storage, which would increase flexibility and resilience of the communal energy supply systems.However, as noted by Ruggiero et al. (2018), the scholarship remains unclear on “how a very diverse and relatively small sector such as community energy could scale up and promote a change in the dominant way of energy production”. What is then the real transformative power of local renewable energy initiatives and whether community energy can offer an alternative to the existing energy system? This paper aims to answer these questions by confronting the critical review of theory with the recent practice of community energy in the Netherlands to build and scale up independent and self-sustaining renewable energy supply structures on the local and national scale and drafting perspectives on the possible role of community energy in the new energy system.
DOCUMENT
With this contribution, the results of the measurement campaign performed with a synchronously distributed antenna array testbed operating at the center frequency of 3.686 GHz are presented. For the first time, to the best of the authors’ knowledge, the electric field distribution induced by coherent downlink transmission was experimentally assessed in the proximity of the target receiver using a calibrated electromagnetic field probe. This allowed to quantify the actual observed electric field gain and the shape of the electric field enhancement region around the target received. It was found that 16 transmitting antenna elements enhance the root-mean-square electric field level by about a factor of two, in a 2.5λ neighborhood of the target receiver. In addition, a possible disruption of the propagation environment due to the probe movement was assessed through the real-time channel state information feedback.
DOCUMENT
In this paper, we experimentally compare orthogonal frequency-division multiplexing (OFDM) and on-off keying (OOK) modulation in the context of the IEEE 802.15.13-2023 standard at bandwidths up to 50 MHz across a Li-Fi link with distances up to 5 m and a lateral offset up to 51°. Error vector magnitude (EVM) and bit error rate (BER) evaluations confirm that the high peak-to-average power ratio (PAPR) of OFDM limits the achievable transmission distance, but it offers higher data rates due to its higher spectral efficiency. Due to the lower PAPR, OOK-based Pulsed Modulation PHY (PM-PHY) shows a significantly higher link range. As the structure of the PM-PHY is based on OFDM symbols, the two solutions may also be combined to open a wider range of use cases for optical wireless communications.
LINK