The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions https://doi.org/10.3390/app10238348 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions.
DOCUMENT
The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions.
MULTIFILE
Channel State Information (CSI) analysis for Predictive Maintenance using Convolutiona Neural Network (CNN).
MULTIFILE
This research investigates growth inhibitors for smart services driven by condition-based maintenance (CBM). Despite the fast rise of Industry 4.0 technologies, such as smart sensoring, internet of things, and machine learning (ML), smart services have failed to keep pace. Combined, these technologies enable CBM to achieve the lean goal of high reliability and low waste for industrial equipment. Equipment located at customers throughout the world can be monitored and maintained by manufacturers and service providers, but so far industry uptake has been slow. The contributions of this study are twofold. First, it uncovers industry settings that impede the use of equipment failure data needed to train ML algorithms to predict failures and use these predictions to trigger maintenance. These empirical settings, drawn from four global machine equipment manufacturers, include either under- or over-maintenance (i.e., either too much or too little periodic maintenance). Second, formal analysis of a system dynamics model based on these empirical settings reveals a sweet spot of industry settings in which such inhibitors are absent. Companies that fall outside this sweet spot need to follow specific transition paths to reach it. This research discusses these paths, from both a research and practice perspective.
LINK
Oscillatory neural dynamics have been steadily receiving more attention as a robust and temporally precise signature of network activity related to language processing. We have recently proposed that oscillatory dynamics in the beta and gamma frequency ranges measured during sentence-level comprehension might be best explained from a predictive coding perspective. Under our proposal we related beta oscillations to both the maintenance/change of the neural network configuration responsible for the construction and representation of sentence-level meaning, and to top-down predictions about upcoming linguistic input based on that sentence-level meaning. Here we zoom in on these particular aspects of our proposal, and discuss both old and new supporting evidence. Finally, we present some preliminary magnetoencephalography data from an experiment comparing Dutch subject- and object-relative clauses that was specifically designed to test our predictive coding framework. Initial results support the first of the two suggested roles for beta oscillations in sentence-level language comprehension.
DOCUMENT
There is a growing literature investigating the relationship between oscillatory neural dynamics measured using electroencephalography (EEG) and/or magnetoencephalography (MEG), and sentence-level language comprehension. Recent proposals have suggested a strong link between predictive coding accounts of the hierarchical flow of information in the brain, and oscillatory neural dynamics in the beta and gamma frequency ranges. We propose that findings relating beta and gamma oscillations to sentence-level language comprehension might be unified under such a predictive coding account. Our suggestion is that oscillatory activity in the beta frequency range may reflect both the active maintenance of the current network configuration responsible for representing the sentence-level meaning under construction, and the top-down propagation of predictions to hierarchically lower processing levels based on that representation. In addition, we suggest that oscillatory activity in the low and middle gamma range reflect the matching of top-down predictions with bottom-up linguistic input, while evoked high gamma might reflect the propagation of bottom-up prediction errors to higher levels of the processing hierarchy. We also discuss some of the implications of this predictive coding framework, and we outline ideas for how these might be tested experimentally.
LINK
As every new generation of civil aircraft creates more on-wing data and fleets gradually become more connected with the ground, an increased number of opportunities can be identified for more effective Maintenance, Repair and Overhaul (MRO) operations. Data are becoming a valuable asset for aircraft operators. Sensors measure and record thousands of parameters in increased sampling rates. However, data do not serve any purpose per se. It is the analysis that unleashes their value. Data analytics methods can be simple, making use of visualizations, or more complex, with the use of sophisticated statistics and Artificial Intelligence algorithms. Every problem needs to be approached with the most suitable and less complex method. In MRO operations, two major categories of on-wing data analytics problems can be identified. The first one requires the identification of patterns, which enable the classification and optimization of different maintenance and overhaul processes. The second category of problems requires the identification of rare events, such as the unexpected failure of parts. This cluster of problems relies on the detection of meaningful outliers in large data sets. Different Machine Learning methods can be suggested here, such as Isolation Forest and Logistic Regression. In general, the use of data analytics for maintenance or failure prediction is a scientific field with a great potentiality. Due to its complex nature, the opportunities for aviation Data Analytics in MRO operations are numerous. As MRO services focus increasingly in long term contracts, maintenance organizations with the right forecasting methods will have an advantage. Data accessibility and data quality are two key-factors. At the same time, numerous technical developments related to data transfer and data processing can be promising for the future.
DOCUMENT
Optimization of aviation maintenance, repair, and overhaul (MRO) operations has been of high interest in recent years for both the knowledge institutions and the industrial community as a total of approximately $70 billion has been spent on MRO activities in 2018 which represents around 10% of an airline’s annual operational cost (IATA, 2019). Moreover, the aircraft MRO tasks vary from routine inspections to heavy overhauls and are typically characterized by unpredictable process times and material requirements. Especially nowadays due to the unprecedent COVID-19 crisis, the aviation sector is facing significant challenges, and the MRO companies strive to strengthen their competitive position and respond to the increasing demand for more efficient, cost-effective, and sustainable processes. Currently, most maintenance strategies employ preventive maintenance as an industrial standard, which is based on fixed and predetermined schedules. Preventive maintenance is a long-time preferred strategy, due to increased flight safety and relatively simple implementation (Phillips et al., 2010). However, its main drawback stems from the fact that the actual time of failure and the replacement interval of a component are hard to predict resulting in an inevitable suboptimal utilization of material and labor. This has two repercussions: first, the reduced availability of assets, the reduced capacity of maintenance facilities, and the increased costs for both the MRO provider and the operator. Second, the increased waste from an environmental standpoint, as the suboptimal use of assets, is also associated with wasted remaining lifetime for aircraft parts which are replaced, while this isn’t yet necessary (e.g., Nguyen et al., 2019).The recently introduced, condition-based maintenance (CBM) and predictive maintenance (PdM) data-driven strategies aim to reduce maintenance costs, maxi-mize availability, and contribute to sustainable operations by offering tailored pro-grams that can potentially result in optimally planned, just-in-time maintenance meaning reduction in material waste and unneeded inspections.
DOCUMENT