BACKGROUND: Hospital stays are associated with high levels of sedentary behavior and physical inactivity. To objectively investigate physical behavior of hospitalized patients, these is a need for valid measurement instruments. The aim of this study was to assess the criterion validity of three accelerometers to measure lying, sitting, standing and walking. METHODS: This cross-sectional study was performed in a university hospital. Participants carried out several mobility tasks according to a structured protocol while wearing three accelerometers (ActiGraph GT9X Link, Activ8 Professional and Dynaport MoveMonitor). The participants were guided through the protocol by a test leader and were recorded on video to serve as reference. Sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were determined for the categories lying, sitting, standing and walking. RESULTS: In total 12 subjects were included with a mean age of 49.5 (SD 21.5) years and a mean body mass index of 23.8 kg/m2 (SD 2.4). The ActiGraph GT9X Link showed an excellent sensitivity (90%) and PPV (98%) for walking, but a poor sensitivity for sitting and standing (57% and 53%), and a poor PPV (43%) for sitting. The Activ8 Professional showed an excellent sensitivity for sitting and walking (95% and 93%), excellent PPV (98%) for walking, but no sensitivity (0%) and PPV (0%) for lying. The Dynaport MoveMonitor showed an excellent sensitivity for sitting (94%), excellent PPV for lying and walking (100% and 99%), but a poor sensitivity (13%) and PPV (19%) for standing. CONCLUSIONS: The validity outcomes for the categories lying, sitting, standing and walking vary between the investigated accelerometers. All three accelerometers scored good to excellent in identifying walking. None of the accelerometers were able to identify all categories validly.
Background & aims: Individual energy requirements of overweight and obese adults can often not be measured by indirect calorimetry, mainly due to the time-consuming procedure and the high costs. To analyze which resting energy expenditure (REE) predictive equation is the best alternative for indirect calorimetry in Belgian normal weight to morbid obese women.Methods: Predictive equations were included when based on weight, height, gender, age, fat free mass and fat mass. REE was measured with indirect calorimetry. Accuracy of equations was evaluated by the percentage of subjects predicted within 10% of REE measured, the root mean squared prediction error (RMSE) and the mean percentage difference (bias) between predicted and measured REE.Results: Twenty-seven predictive equations (of which 9 based on FFM) were included. Validation was based on 536 F (18–71 year). Most accurate and precise for the Belgian women were the Huang, Siervo, Muller (FFM), Harris–Benedict (HB), and the Mifflin equation with 71%, 71%, 70%, 69%, and 68% accurate predictions, respectively; bias −1.7, −0.5, +1.1, +2.2, and −1.8%, RMSE 168, 170, 163, 167, and 173 kcal/d. The equations of HB and Mifflin are most widely used in clinical practice and both provide accurate predictions across a wide range of BMI groups. In an already overweight group the underpredicting Mifflin equation might be preferred. Above BMI 45 kg/m2, the Siervo equation performed best, while the FAO/WHO/UNU or Schofield equation should not be used in this extremely obese group.Conclusions: In Belgian women, the original Harris–Benedict or the Mifflin equation is a reliable tool to predict REE across a wide variety of body weight (BMI 18.5–50). Estimations for the BMI range between 30 and 40 kg/m2, however, should be improved.
Background: Due to differences in the definition of frailty, many different screening instruments have been developed. However, the predictive validity of these instruments among community-dwelling older people remains uncertain. Objective: To investigate whether combined (i.e. sequential or parallel) use of available frailty instruments improves the predictive power of dependency in (instrumental) activities of daily living ((I)ADL), mortality and hospitalization. Design, setting and participants: A prospective cohort study with two-year followup was conducted among pre-frail and frail community-dwelling older people in the Netherlands. Measurements: Four combinations of two highly specific frailty instruments (Frailty Phenotype, Frailty Index) and two highly sensitive instruments (Tilburg Frailty Indicator, Groningen Frailty Indicator) were investigated. We calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for all single instruments as well as for the four combinations, sequential and parallel. Results: 2,420 individuals participated (mean age 76.3 ± 6.6 years, 60.5% female) in our study. Sequential use increased the levels of specificity, as expected, whereas the PPV hardly increased. Parallel use increased the levels of sensitivity, although the NPV hardly increased. Conclusions: Applying two frailty instruments sequential or parallel might not be a solution for achieving better predictions of frailty in community-dwelling older people. Our results show that the combination of different screening instruments does not improve predictive validity. However, as this is one of the first studies to investigate the combined use of screening instruments, we recommend further exploration of other combinations of instruments among other study populations.