This literature review reports on the assumed relations between primary school teachers' knowledge of technology and pupils' attitude towards technology. In order to find relevant aspects of technology-specific teacher knowledge, scientific literature in the field of primary technology education was searched. It is found that teacher nowledge is essential for stimulating a positive attitude towards technology in pupils. Particularly, teachers' enhanced Pedagogical Content Knowledge is found to be related to pupils' increased learning and interest in technology. Six aspects of technology-specific teacher knowledge that are likely to play a role in affecting pupils' attitude are identified and schematically presented in a hypothetical diagram. It is concluded that more empirical vidence on the influence of technology-specific teacher knowledge on pupils' attitude is needed. The hypothetical diagram will serve as a helpful tool to investigate the assumed relations between teacher knowledge and pupils' attitude empirically.
LINK
Conference poster Digitally controlled systems, such as elevators, washing machines, and traffic lights, are ubiquitous in children's present-day world. However, in current educational practice, such systems are hardly being addressed, and little is known about children's initial understandings about such systems in concrete situations. Therefore, we explored grade 3 and grade 6 pupils' understandings of digital control systems in the contexts of a car park, an elevator, and an autonomous robot. We interviewed 48 pupils to explore their initial understanding of the system at hand from the perspectives of the user, the computer, and the programmer perspective. The interviews were analyzed through a directed content analysis. Results from three perspectives and three contexts are described.
LINK
Programmed control systems are ubiquitous in the present-day world. In current educational practice, however, these systems are hardly being addressed, and little is known about children’s spontaneous understandings about such systems. Therefore, we explored pupils’ understandings prior to instruction in three concrete settings: a car park, an elevator, and an autonomous robot. We analysed written responses from 49 Grade 3 (aged 7 to 10) and Grade 6 pupils (aged 10 to 13) to assess their understandings from two perspectives: the user and the system programmer perspective. Results indicate that most pupils were capable describing programmed systems from a user perspective point of view but found it hard to describe the system programmer perspective. Substantial differences were found between the contexts. The car park context evoked richer descriptions for the user perspective and the system programmer perspective in comparison to the elevator and autonomous robot contexts.
LINK