DOCUMENT
Exploratory analyses are an important first step in psychological research, particularly in problem-based research where various variables are often included from multiple theoretical perspectives not studied together in combination before. Notably, exploratory analyses aim to give first insights into how items and variables included in a study relate to each other. Typically, exploratory analyses involve computing bivariate correlations between items and variables and presenting them in a table. While this is suitable for relatively small data sets, such tables can easily become overwhelming when datasets contain a broad set of variables from multiple theories. We propose the Gaussian graphical model as a novel exploratory analyses tool and present a systematic roadmap to apply this model to explore relationships between items and variables in environmental psychology research. We demonstrate the use and value of the Gaussian graphical model to study relationships between a broad set of items and variables that are expected to explain the effectiveness of community energy initiatives in promoting sustainable energy behaviors.
LINK
The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are limited is likely to increase in the coming decades, as autonomous systems become more common and human workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level of protection against potentially hazardous situations. We present such a method to create dynamic safety zones, the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available and using conservative extrapolation from last known location when information is missing or unreliable. Simulation and statistical methods were used to investigate performance gains compared to static safety zones. The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its implementation would not offer the same level of protection and is currently not recommended.
MULTIFILE