Gezonde School-adviseurs (GSA) van de GGD ondersteunen scholen bij het implementeren van de Gezonde School-aanpak. Omdat iedere school uniek is, is een contextgerichte manier van ondersteunen noodzakelijk. Om GSA’s bewust te maken van en aan te moedigen om te werken met zo’n contextgerichte aanpak is een training ontwikkeld. Wij beschrijven hoe deze training door middel van cocreatie tot stand is gekomen en reflecteren op dit proces. Het ontwikkelproces bestond uit drie fasen: 1) inventarisatie van taken en behoeften van GSA, 2) ontwikkeling van de training, en 3) een pilottest van de training. Alle fasen hebben plaatsgevonden in cocreatie tussen onderzoekers, GSA’s uit de praktijk en het landelijke programmateam Gezonde School. Evaluatie van de twee gehouden pilots laat zien dat de ontwikkelde training goed wordt ontvangen (algemeen rapportcijfer: respectievelijk 7,4 en 8,4). Een reflectie op het ontwikkelingsproces laat zien hoe groot het belang is van cocreatie gedurende het gehele proces. Hierdoor kon continu rekening worden gehouden met de dagelijkse praktijk van de GSA’s en hun wensen en behoeften. Ook kon er zo voor gezorgd worden dat de training goed aansluit bij het huidige landelijke deskundigheidsbevorderingsaanbod voor GSA’s en de Gezonde School-aanpak in het algemeen.
DOCUMENT
Evaluatieverslag van de training periode van het TERM/IAE project
DOCUMENT
Aim: To evaluate healthcare professionals' performance and treatment fidelity in the Cardiac Care Bridge (CCB) nurse-coordinated transitional care intervention in older cardiac patients to understand and interpret the study results. Design: A mixed-methods process evaluation based on the Medical Research Council Process Evaluation framework. Methods: Quantitative data on intervention key elements were collected from 153 logbooks of all intervention patients. Qualitative data were collected using semi-structured interviews with 19 CCB professionals (cardiac nurses, community nurses and primary care physical therapists), from June 2017 until October 2018. Qualitative data-analysis is based on thematic analysis and integrated with quantitative key element outcomes. The analysis was blinded to trial outcomes. Fidelity was defined as the level of intervention adherence. Results: The overall intervention fidelity was 67%, ranging from severely low fidelity in the consultation of in-hospital geriatric teams (17%) to maximum fidelity in the comprehensive geriatric assessment (100%). Main themes of influence in the intervention performance that emerged from the interviews are interdisciplinary collaboration, organizational preconditions, confidence in the programme, time management and patient characteristics. In addition to practical issues, the patient's frailty status and limited motivation were barriers to the intervention. Conclusion: Although involved healthcare professionals expressed their confidence in the intervention, the fidelity rate was suboptimal. This could have influenced the non-significant effect of the CCB intervention on the primary composite outcome of readmission and mortality 6 months after randomization. Feasibility of intervention key elements should be reconsidered in relation to experienced barriers and the population. Impact: In addition to insight in effectiveness, insight in intervention fidelity and performance is necessary to understand the mechanism of impact. This study demonstrates that the suboptimal fidelity was subject to a complex interplay of organizational, professionals' and patients' issues. The results support intervention redesign and inform future development of transitional care interventions in older cardiac patients.
DOCUMENT
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.