Far from being negligible in quantity, decentralized energy production delivers a considerable part of the renewable energy production in the Netherlands. Decentralized production takes place by individual households, companies as well as citizen groups. Grassroots initiatives have sprung up in the Netherlands in the last 5 years, in a recent inventory 313 formally instituted local energy cooperatives were found. Cooperatives’ aims are sustainability, strengthening local economy and promoting a democratic governance structure for energy production.The energy industry in the Netherlands has traditionally been dominated by large energy companies, and the Groningen gas field has resulted in a very high dependency on natural gas for both consumer and business households. The climate for grassroots initiatives has improved since the so-called Energy Covenant in 2013. This covenant pertains to an agreement between government, industry representatives, labor unions and non-governmental organizations to arrive at a substantial reduction of energy use, ambitious increase in the production of renewable energy, and new jobs in the renewable energy sector.The covenant also announced new policies to stimulate community energy activities, such as the Zip-code-rose policy . The governmental interest in new forms of energy transition, is also demonstrated by the ‘Experiments Electricity Law’ facility, which gives local business and community initiatives an opportunity to experiment with a local energy system. This policy is meant as a ‘learning facility’; experiences are expected to lead to adaptations in Dutch electricity law and regulation.
Energiebeheer gericht aanpakken, Het analyseren van doelstellingen, resultaten en impacts van energie- en broeikasgasbeheersprogramma’s in bedrijven (met een samenvatting in het Nederlands): De wereldwijde uitstoot van broeikasgassen moet drastisch worden teruggebracht om de mondiale stijging van de temperatuur tot het relatief veilige niveau van maximaal 2 graden Celsius te beperken. In de komende decennia zal de verbetering van de energie-efficiëntie de belangrijkste strategie zijn voor het verminderen van de energiegerelateerde uitstoot van broeikasgassen. Hoewel er een enorm potentieel is voor verbetering van de energie-efficiëntie, wordt een groot deel daarvan nog niet benut. Dit wordt veroorzaakt door diverse investeringsbarrières die de invoering van maatregelen voor energie-efficiëntie verbetering verhinderen. De invoering van energiemanagement wordt vaak beschouwd als een manier om dergelijke barrières voor energiebesparing te overwinnen. De invoering van energiemanagement in bedrijven kan worden gestimuleerd door de introductie van programma's voor energie-efficiëntie verbetering en vermindering van de uitstoot van broeikasgassen. Deze programma's zijn vaak een combinatie van verschillende elementen zoals verplichtingen voor energiemanagement; (ambitieuze) doelstellingen voor energiebesparing of beperking van de uitstoot van broeikasgassen; de beschikbaarheid van regelingen voor stimulering, ondersteuning en naleving; en andere verplichtingen, zoals openbare rapportages, certificering en verificatie. Tot nu toe is er echter beperkt inzicht in het proces van het formuleren van ambitieuze doelstellingen voor energie-efficiëntie verbetering of het terugdringen van de uitstoot van broeikasgassen binnen deze programma's, in de gevolgen van de invoering van dergelijke programma's op de verbetering van het energiemanagement, en in de impact van deze programma's op energiebesparing of de vermindering van de uitstoot van broeikasgassen. De centrale onderzoeksvraag van dit proefschrift is als volgt geformuleerd: "Wat is de impact van energie- en broeikasgasmanagement programma’s op het verbeteren van het energiemanagement in de praktijk, het versnellen van de energieefficiëntie verbetering en het beperken van de uitstoot van broeikasgassen in bedrijven?".
The ambition of a transition to a sustainable society brings forth the dual challenge to preserve historical buildings and simultaneously improve the energy performance of our built environment. While engineers claim that a dramatic reduction of energy use in the built environment is feasible, it has proven to be a difficult and twisting road.In this paper we focus on historical buildings, where difficulties of energy reduction are paramount, as such buildings provide local identity and a connection to our past. It is a EU policy objective to conserve and redesign heritage buildings like prisons, military barracks, factories, stations, and schools. Such redesign should also ensure reduction of energy use without compromising historical identity. In this paper we conceptually and empirically investigate how the two conflicting aspirations unfold. In particular we elaborate the obduracy and scripts of buildings, to clarify how they resist change and invite a specific use. We analyse the tensions between identity and energy conservation in a case study of a restoration project in Franeker. This buildinghas recently undergone a restoration, with energy efficiency as one of its goals.Scripts and networks are traced by a combination of methods, such as studyinglayout, materials and building history, and qualitative interviews with restoration architects and users. We identified three types of strategies to conserve identity and energy: design strategies; identity strategies and network strategies. Such strategies are also relevant for other efforts where conservation and innovation have to be reconciled.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
The specific objective of HyScaling is to achieve a 25-30% cost reduction for levelized cost of hydrogen. This cost reduction will be achieved in 2030 when the HyScaling innovations have been fully implemented. HyScaling develops novel hardware (such as stacks & cell components), low-cost manufacturing processes, optimized integrated system designs and advanced operating and control strategies. In addition to the goal of accelerating implementation of hydrogen to decarbonize energy-intensive industry, HyScaling is built around industrial partners who are aiming to build a business on the HyScaling innovations. These include novel components for electrolysers (from catalysts to membranes, from electrode architectures to novel coatings) as well as electrolyser stacks and systems for different applications. For some innovations (e.g. a coating from IonBond, an electrode design from Veco) the consortium aims at starting commercialisation before the end of the program. A unique characteristic of the HyScaling program is the orientation on Use Cases. In addition to partners representing the Dutch manufacturing industry, end-users and technology providers are partner in the consortium. This enables the consortium to develop the electrolyser technology specifically for different applications. In order to be able to come to an assessment of the market for electrolysers and components, the use cases also include decentralized energy systems.Projectpartners:Nouryon, Tejin, Danieli Corus, VDL, Hauzer, VECO, lonbond, Fluor, Frames, Magneto, VONK, Borit, Delft IMP, ZEF, MTSA, SALD, Dotx control, Hydron Energy, MX, Polymers, VSL, Fraunhofer IPT, TNO, TU Delft, TU Eindhoven, ISPT, FMC.