We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
There is an urgent need for energy renovation of the existing building stock, in order to reach the climate goals, set in Paris in 2016. To reach climate targets, it is important to considerably lower energy demand as well as switch to fossil-free heating systems. Unfortunately, renovation rates across the EU remain at a low level of 1% per year. Deep renovation, which lowers energy use with 60% or more, accounts only for 0,2% of renovations. The heating transition thus progresses much more slowly than the electricity transition. We draw on the framework of technological innovation systems, which allows comparison of different transitions. In the literature, it is argued that the configurational nature of the renovation system is one of the main reasons for the slow heating transition. The renovation system is context-bound and consists of many actors both on the demand-side and the supply-side, which leads to a fragmented market. For increasing the speed of the heating transition, it is deemed important to counter this fragmentation. We carried out a review of reports and publications of EU-funded projects on energy renovation. In many projects fragmentation in the building sector was identified as one of the main obstacles. We analyzed the deliverables of these energy renovation projects to find tried and tested solutions. One of these is the so-called one-stop-shop, which promises to improve the organization of the supply side, while also providing an appropriate and affordable solution to the customer. In the discussion we argue that the energy renovation system could be improved by increasing collaboration on the supply side and at the same time simplifying the renovation process for customers. A promising tool to make this happen is the one-stop-shop.
LINK
Purpose eHealth projects in the Netherlands have various backgrounds. First, the number of persons aged 65 and over will have increased by 400,000 between 2008 and 20131. Over the same period, the potential workforce will have decreased from 4.2 persons at present to 3.6 persons for each 65 plus. Second, there is a shift from institutional care to care provided at home. The Dutch government promotes healthy behaviour and emphasises the importance of disease prevention2. People prefer to continue living in the community, even when their health is declining. Finally, Dutch policies stimulate the use of e-health in order to (i) support ageing-in-place (AiP), (ii) to enhance the quality of life of older adults, and (iii) to reduce the workload of professional carers. Method Vilans’ Centre of Excellence for Long-Term Care3 database of 85 projects was analyzed. The projects included in the database date from 2004 and after. Some of these projects have been completed and terminated; other projects are still ongoing. Although the database includes the majority of the projects, a complete coverage of all projects in The Netherlands is not guaranteed. To analyse the barriers, all projects were sorted according to one type of e-Health project (videoconferencing, activity monitoring, other types). In this study, basic, functional and economic values from the Model of Integrated Building Design4 were considered as relevant stakeholder values deemed necessary for a successful implementation. Results & Discussion Most projects in the database use e-Health for the support of older adults with (48 projects) or without (35 projects) care needs. In addition, dementia (19 projects), COPD and diabetes (both 11 projects) are the three health conditions that e-Health applications are most often used for. A major barrier for implementation is that only 11 out the 85 projects have a social business case. Another barrier is that requirements to building construction, building systems, e-Health applications or (building) services are hardly ever considered in the projects that also aim to support ageing-in-place. There are many stakeholders involved in the e-Health projects, and not all of the needs of these stakeholders are met in the design and implementation of the accompanying technologies. The execution of these projects seems to consist merely of an analysis of the technological applications with emphasis on the needs of the care recipient and other primary users. To date, e-Health projects in The Netherlands have not been fully implemented5. As well as a failure to include stakeholder needs and accounting for potential barriers, another reason may be that use of e-Health in care will imply innovating care protocols. Care provision shifting from a medical disease oriented model towards a care and wellbeing model. A structural exchange of knowledge and experience in functionalities and user needs will be necessary to take away barriers to a large-scale and successful implementation of e-Health in The Netherlands.
Massafabricage in de (MKB) maakindustrie is aan het veranderen in flexibele fabricage en assemblage van kleine series, klantspecifieke onderdelen en eindproducten. Hiervoor zijn nieuwe systemen voor het MKB nodig, waarin robots en mensen samen kunnen werken en die zich snel kunnen aanpassen aan nieuwe productieomstandigheden met lage opstartkosten. De ambitie van het project ?(G)een Moer Aan!? is om het herconfigureren van een robotsysteem voor een nieuwe taak in een productieomgeving net zo eenvoudig en snel te maken als het gebruik van een smartphone. Zo?n benadering biedt kansen om de skills van de operator te benutten. De operator kent immers zijn processen en de robot wordt zijn hulpje. Op vraag van betrokken mkb partners is de focus gelegd op een repeterende productiehandeling die in veel sectoren voorkomt en die relatief veel arbeidstijd kost: het indraaien van moeren en bouten in een object. De centrale onderzoeksvraag van het project luidt: Hoe kan een operator een robot eenvoudig, snel en veilig inleren om assemblage handelingen te verrichten voor het snel en robuust verbinden van bouten, moeren en ringen met objecten? Resultaat van dit praktijkgerichte onderzoeksproject is een algemeen bruikbare en gevalideerde ontwerpmethodiek voor de opzet van een gebruiksvriendelijke user interface van een boutmontagerobot op de werkvloer. Door slim gebruik van geïntegreerde inzet van CAD productinformatie, vision technologie en compliant (meegaand) gripping en placing wordt de robot zo veel als mogelijk vooraf automatisch geconfigureerd. Het projectconsortium dat het onderzoek gaat uitvoeren bestaat uit: " 13 bedrijven (12 mkb) actief als toeleverancier, system integrator of gebruiker op het terrein van industriële robotica (Yaskawa, ABB, Smart Robotics, Hupico, Festo, CSi, Demcon, Heemskerk Innovate, WWA, Van Schijndel Metaal, Van Beek, Tegema en Zest Innovate); " Hogescholen Fontys (penvoerder), Avans, Utrecht en NHL; " Kennisinstellingen TNO en DIFFER; " Coöperaties Brainport Industries, FEDA en Koninklijke Metaalunie; " De gemeente Eindhoven is betrokken als partner in de klankbordgroep. De gemeente ondersteunt het belang van dit project voor behoud en verbetering van arbeidsplaatsen in de maakindustrie. Er zullen circa 20 (docent)onderzoekers van de hogescholen en ongeveer 80 studenten betrokken worden bij dit project, die in de vorm van stages en afstudeeronderzoeken werken aan interessante vraagstukken direct afkomstig uit de beroepspraktijk. Naast genoemde meerwaarde voor het bedrijfsleven beoogt het project een verdere verankering van kennis en kunde in onderwijs en lectoraten en een vergroting van de kwaliteit van docenten en afstudeerders.
3D betonprinten is een techniek met een grote potentie voor de bouwsector . Het in 2018 geëindigde RAAK-mkb KONKREET project, heeft voor lectoraat Industrial Design en de betrokken partners veel inzichten op gebied van 3D betonprinten opgeleverd. (van Beuren & Vrooijink, 2018) Één van deze inzichten is dat door het laagsgewijs opbouwen van het object bij 3D betonprinten het wapenen nog als uitdaging kan worden gezien. Immers als de wapening er al is wanneer de printkop er langs komt zit deze de printkop in de weg, en wanneer deze later aangebracht moet worden kan het beton al zijn uitgehard. Dit ‘wapeningsprobleem’ zorgt ervoor dat wapening uit het printvlak in-situ niet te realiseren is. Binnen het KONKREET project is hiervoor als oplossing een concept met technisch textiel bedacht om te wapenen. Hierbij kan het vormbare textiel tijdens het printproces tegen het oppervlak worden aangedrukt. De partners van dit project, Ter Steege advies & innovatie en Vertico XL printing, willen bewijzen dat door het concept verder uit te werken een belangrijke drempel van het 3D betonprinten kan worden weggenomen. Het doel is om een methode te ontwikkelen om in-situ wapening in de vorm van technisch textiel te realiseren bij 3D geprint beton. Dit vraagt om een creatieve oplossing. Om dit te doen zijn er 6 projectstappen: 1. Belastingseis vaststellen 2. Geschikt textiel selecteren 3. Methode ontwikkelen voor het aanbrengen van textiel 4. Onderzoek naar binding textiel aan het beton 5. Onderzoek naar de mechanische eigenschappen van het nieuwe materiaal 6. Disseminatie van de opgedane kennis. Belangrijk is om hierbij te benoemen dat het om een verkennend onderzoek gaat waarbij onderzocht wordt of het een kansrijke wapeningsmethode kan zijn.
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.