The Dutch government and leading academics in the field of circular economy propose that “repurposing”, i.e., finding new usages for discarded material, is important to reduce resource usage. Waste collectors, municipalities and start-ups increasingly find ways to develop circular business models, aiming for minimum loss of material integrity. Repurpose is a circular business model strategy which entails using a discarded product or its parts in a new product with a different function.The aim of this research is to gain a better understanding of this promising but academically underexposed circular strategy by empirically exploring its key characteristics and developing a taxonomy that reflects the scope and potential of the concept. The taxonomy development was based on clustering and comparing 96 case examples using key characteristics and critical factors empirically collected by means of 11 semi-structured expert interviews. The taxonomy was iteratively refined and validated by means of workshops with experts.This paper proposes a taxonomy and a comprehensive definition for repurposing. The Repurpose taxonomy distinguishes three main categories with increasing levels of material integrity: “Reprocess”, “Reshape” and “Recontextualize”. The taxonomy provides a refinement of existing circular business model patterns and frameworks for closing material loops strategies. It shows how repurposing may exploit the creative potential of design to fill the gap between reuse and recycling by retaining previously added value with three levels of physical adjustment.
The challenges facing primary education are significant: a growing teacher shortage, relatively high administrative burdens that contribute to work-related stress and an increasing diversity of children in the classroom. A promising new technology that can help teachers and children meet these challenges is the social robot. These physical robots often use artificial intelligence and can communicate with children by taking on social roles, such as that of a fellow classmate or teaching assistant. Previous research shows that the use of social robots can lead to better results in several ways than when traditional educational technologies are applied. However, social robots not only bring opportunities but also lead to new ethical questions. In my PhD research, I investigated the moral considerations of different stakeholders, such as parents and teachers, to create the first guideline for the responsible design and use of social robots for primary education. Various research methods were used for this study. First of all, a large, international literature study was carried out on the advantages and disadvantages of social robots, in which 256 studies were ultimately analysed. Focus group sessions were then held with stakeholders: a total of 118 parents of primary school children, representatives of the robotics industry, educational policymakers, government education advisors, teachers and primary school children contributed. Based on the insights from the literature review and the focus group sessions, a questionnaire was drawn up and distributed to all stakeholders. Based on 515 responses, we then classified stakeholder moral considerations. In the last study, based on in-depth interviews with teachers who used robots in their daily teaching and who supervised the child-robot interaction of >2500 unique children, we studied the influence of social robots on children's social-emotional development. Our research shows that social robots can have advantages and disadvantages for primary education. The diversity of disadvantages makes the responsible implementation of robots complex. However, overall, despite their concerns, all stakeholder groups viewed social robots as a potentially valuable tool. Many stakeholders are concerned about the possible negative effect of robots on children's social-emotional development. Our research shows that social robots currently do not seem to harm children's social-emotional development when used responsibly. However, some children seem to be more sensitive to excessive attachment to robots. Our research also shows that how people think about robots is influenced by several factors. For example, low-income stakeholders have a more sceptical attitude towards social robots in education. Other factors, such as age and level of education, were also strong predictors of the moral considerations of stakeholders. This research has resulted in a guideline for the responsible use of social robots as teaching assistants, which can be used by primary schools and robot builders. The guideline provides schools with tools, such as involving parents in advance and using robots to encourage human contact. School administrators are also given insight into possible reactions from parents and other parties involved. The guideline also offers guidelines for safeguarding privacy, such as data minimization and improving the technical infrastructure of schools and robots; which still often leaves much to be desired. In short, the findings from this thesis provide a solid stepping stone for schools, robot designers, programmers and engineers to develop and use social robots in education in a morally responsible manner. This research has thus paved the way for more research into robots as assistive technology in primary education.
LINK
Educational policies in the Netherlands reveal that the current mainstream participatory approach to citizenship education jeopardises students’ autonomy. Especially in Dutch post-secondary vocational education, citizenship education has been shown to be mainly aimed at socialization: initiating students into tradition, internalising rules, societal norms and values. This article reports on the findings of a research project, which is grounded in the assumption that integrating Bildung, citizenship education and critical thinking is a promising way to grapple with the perceived overemphasis on socialization strategies. We justify the interrelationship of critical thinking, Bildung, citizenship education, and professional training from two perspectives – historical and contemporary. It is only by combining these concepts, we contend, that educational professionals can create teaching materials more geared to developing autonomy, and prepare students in vocational training to navigate the political and societal dilemma’s on the work floor. Furthermore, we also clarify our perspective by offering three educational principles, used in our project to guide the design of teaching materials, that form a context for integrating citizenship, critical thinking, and Bildung in vocational education. A practical illustration is subsequently discussed.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
Climate change and the depletion of resources in the world are widely recognized as the greatest societal challenges. The building sector is responsible for 40% of the raw material consumption globally. The emissions related to construction materials are anticipated to double by 2050, if no new technologies are adopted (EC, 2021). Based on the environmental cost indicator, isolation has the second largest (after concrete) impact to the environment. In Mythic - Myterials for THermal Insulation in Construction goal is to develop (in co-creation with the work field) the best available mycelium biocomposite, which can be used as a circular, biodegradable insulation material for construction in the building sector. In recent research projects partners concluded that Mycelium biocomposites have a high potential to replace traditional fossil-based isolation materials, but further research on the thermal insulation and moisture absorption is needed to convince the construction market. In the project various partners will cooperate, both from the production side of mycelium composites, as well as from the application side. Some partners originate from previous projects, but others contacted Centre of Expertise for the Biobased Economy (CoEBBE) to build further on the existing network. There are several SME’s from the Netherlands, but also from abroad (Nylausn from Iceland, Mogu Srl from Italy and Corstyrene form France), as well as Branche organizations and knowledge institutes. Avans works together with HZ in CoEBBE and for the microbiological knowledge we cooperate with the University of Utrecht. For the market research CoEBBE cooperates with the lectorate New Marketing within Avans, focussing on sustainability via biomimicry. Mycelium composites and natural products for the building industry is the theme that binds all partners.
Green methanol is emerging as a key player in sustainable biotech, offering a renewable alternative to fossil fuels or sugar based feedstocks. Although methanol has long been considered a promising material for bioproduction, using it on industrial scale has been challenging due to its high oxygen demands, making the process expensive and inefficient. This project focuses on developing a sustainable, but more economical feasible way to produce biochemicals, like Single Cell Protein (SCP). The innovative solution proposed by FeedstocksUnited (FSU) is to use paraformaldehyde, a compound derived from renewable methanol, as feedstock, which requires much less oxygen during fermentation. This new method has already shown promising results in the lab, where it was tested with microorganisms that can use formaldehyde (released from paraformaldehyde) as a source of carbon and energy. FSU’s approach has the potential to significantly reduce the costs and environmental impacts associated with large-scale bioproduction. The process can be managed more efficiently than methods using methanol, since the production of paraformaldehyde from formaldehyde is tunable. This process control will lead to better yields and reduced energy and feedstock consumption. The HAN BioCentre, with its advanced research facilities and experienced team, will conduct further research to optimize this method for industrial applications. This includes studying how organisms metabolize formaldehyde and improving the process through continuous fermentation. The research also supports educational goals by involving students in cutting-edge biotechnological work. Ultimately, the project aims to provide a solid proof-of-concept that can be scaled up to industrial levels, contributing to a more sustainable bioeconomy.