This article discusses the importance of fully integrating research activities into the Bachelor level programs (undergraduate programs) in orthopaedic engineering / prosthetics and orthotics. To work according to evidence based principles and acquire the competences to do so it is necessary for students to engage in research activities from within the educational programme as soon as possible. Involvement in research not only creates more insight in what research means and what the effects are, but also generates a number of cross links with the stakeholders involved in P&O education (see fig 1) which were not apparent before for the student. Also, the interaction with orthopaedic companies is stimulated in a broader context than is traditionally the case. A structure enhancing the interaction of educational institution, companies, research groups and institutions is presented which operates at the intersection of these stakeholders. A whole new world is therefore coming into range which will generate all kinds of new and unexplored opportunities.
DOCUMENT
A keynote address, introducing the pdca quality systeem into education in prosthetics and orthotcs.
DOCUMENT
Abstract about the design and review of Bachelor level education in prosthetics and orthotics in the Netherland.
DOCUMENT
Dissertatie met als onderwerp het ontwerp en evaluatie van de Hogere Beroepsopleidding Orthopedische Technologie in Nederland. In deze dissertatie wordt naast het ontwerp van de opleiding ingegaan op een vergelijking die is gemaakt met andere opleidingen op het gebied van hoger orthopedisch technologisch onderwijs in de wereld.
DOCUMENT
This paper explains the history of the graduate course in prosthetics and orthotics in the Netherlands. It also explains the schoolstystem in relationship towards vocational education and postgraduate education.
DOCUMENT
Dissertatie met als onderwerp het ontwerp en evaluatie van de Hogere Beroepsopleidding Orthopedische Technologie in Nederland. In deze dissertatie wordt naast het ontwerp van de opleiding ingegaan op een vergelijking die is gemaakt met andere opleidingen op het gebied van hoger orthopedisch technologisch onderwijs in de wereld.
DOCUMENT
Het ondergaan van een eenzijdige beenamputatie is een drastische chirurgische ingreep. Mensen, die na een amputatie in staat zijn om te lopen met een prothese, zijn functioneel onafhankelijker, en hebben een hogere kwaliteit van leven dan mensen die in een rolstoel belanden. Het is daarom niet verrassend dat het herwinnen van de oopvaardigheid één van de voornaamste doelen is tijdens de revalidatie. Doel van het onderzoek was om inzicht te krijgen in de factoren die het herwinnen en onderhouden van de loopvaardigheid van mensen na een beenamputatie beïnvloeden. Gebaseerd op de resultaten van het onderzoek kan geconcludeerd worden dat de fysieke capaciteit hierbij een belangrijke rol speelt. Een relatief kleine verbetering in de capaciteit kan al resulteren in significante en klinisch relevante verbeteringen. Hoewel geavanceerde prothesen de mechanische belasting van het lopen met een beenprothese verminderen, kan een ineffectieve balanscontrole deze positieve resultaten weer tenietdoen. ABSTRACT Undergoing a lower limb amputation is a life-changing surgery. The ability to walk greatly influences the subject's functional independence and quality of life. Not surprisingly, regaining walking ability is one of the primary goals during prosthetic rehabilitation. The primary aim of the research performed was to enhance our understanding of some of the factors that influence the ability to regain and maintain walking after a unilateral lower limb amputation. Based on the results we can deduce that a person's physical capacity plays an important role in their walking ability. Relatively small improvements in capacity could lead to significant and clinically relevant improvements in people's walking ability. Furthermore, results show that sophisticated prosthetic feet can reduce the mechanical load experienced when walking with a prosthesis. Interestingly, inefficient balance control strategies can undo any positive effect of these prostheses.
DOCUMENT
Assistive technology supports maintenance or improvement of an individual’s functioning and independence, though for people in need the access to assistive products is not always guaranteed. This paper presents a generic quality framework for assistive technology service delivery that can be used independent of the setting, context, legislative framework, or type of technology. Based on available literature and a series of discussions among the authors, a framework was developed. It consists of 7 general quality criteria and four indicators for each of these criteria. The criteria are: accessibility; competence; coordination; efficiency; flexibility; user centeredness, and infrastructure. This framework can be used at a micro level (processes around individual users), meso level (the service delivery scheme or programme) or at a macro level (the whole country). It aims to help identify in an easy way the main strengths and weaknesses of a system or process, and thus guide possible improvements. As a next step in the development of this quality framework the authors propose to organise a global consultancy process to obtain responses from stakeholders across the world and to plan a number of case studies in which the framework is applied to different service delivery systems and processes in different countries.
DOCUMENT
The definition of ‘Assistive Technology’ (AT) includes both assistive products and the services or actions necessary for safe and effective provision of the assistive products to people who need them. International standards and product specifications exist for assistive products. Despite huge unmet need for effective AT provision, a variety of service delivery models across different countries, and a shortage of personnel trained in this field, nowidely useable and accepted AT service provision guidelines currently exist. Aligned with contemporary global initiatives to improve access to AT, a scoping review was commissioned to inform the development of globally useable provision guidance. The aim was to deliver a rapid scoping review of the literature regarding quality guidelines for AT service provision. Method: The rapid scoping review utilised a two-tiered approach to identifying relevant publications: 1) systematic search of academic databases; 2) consultation with assistive technology organisations. The review was conducted in March 2023 across four databases (Medline, CINAHL, SCOPUS and Google Scholar) with no date limitations. Systematic outreach to international and global AT networks was used to access expert informants. Non-English publications were included utilizing Google Translate and support from expert informants to verify content. Analysis was guided by the body of work on quality AT provision and service delivery processes in Europe, as well as the World Health Organization-GATE 5P framework for strengthening access to AT. Results: The search strategies yielded 41 publications from diverse countries, and directed at differing assistive products, personnel and provision contexts. Results are reported from the charted data through to the data extraction framework, including type of publication, study design, audience and reach. We report on the type of AT and the AT provision ecosystem elements discussed, and service delivery process or steps and quality criteria service delivery. Conclusion: This review did not find established guidelines or standards for service provision, but it did identify key service delivery steps which may form part of such guidelines, and many of the 3 publications included mentioned the need for practice guidelines. Despite different contexts such as type of assistive product, recipient of the guidance, language, location and authorship, core elements of AT provision including service delivery steps can be identified. Consideration regarding the nuances of vocabulary, of process, and of enabling flexible foci, is recommended in systematizing globally applicable guidance. This review offers a strong starting point for developing guidance for assistive technology provision to meet global need.
DOCUMENT
Quality of life serves a reference against which you can measure the various domains of your own life or that of other individuals, and that can change over time. This definition of the World Health Organization encompasses many elements of daily living, including features of the individual and the environment around us, which can either be the social environment, the built environment, or other environmental aspects. This is one of the rationales for the special issue on “Quality of Life: The Interplay between Human Behaviour, Technology and the Environment”. This special issue is a joint project by the Centre of Expertise Health Innovation of the Hague University of Applied Sciences in The Netherlands. The main focus of this Special Issue is how optimising the interplay between people, the environment, and technology can enhance people’s quality of life. The focus of the contributions in this special issue is on the person or end‐user and his or her environment, both the physical, social, and digital environment, and on the interaction between (1) people, (2) health, care, and systems, and (3) technology. Recent advances in technology offer a wide range of solutions that support a healthy lifestyle, good quality of life, and effective and efficient healthcare processes, for a large number of end‐users, both patients/clients from minus 9 months until 100+ years of age, as well as practitioners/physicians. The design of new services and products is at the roots of serving the quality of life of people. Original article at MDPI; DOI: https://doi.org/10.3390/ijerph16245106 (Editorial of Special Issue with the same title: "Quality of Life: The Interplay between Human Behaviour, Technology and the Environment")
MULTIFILE