Knowledge of the time of deposition is pivotal in forensic investigations. Recent studies show that changes in intrinsic fluorescence over time can be used to estimate the age of body fluids. These changes have been attributed to oxidative modifications caused by protein–lipid interactions. This pilot study aims to explore the impact of these modifications on body fluid fluorescence, enhancing the protein–lipid model system for age estimation. Lipid and protein oxidation markers, including protein carbonyls, dityrosine, advanced glycation end-products (AGEs), malondialdehyde (MDA), and 4-hydroxynonenal (HNE), were studied in aging semen, urine, and saliva over 21 days. Surface plasmon resonance imaging (SPRi), enzyme-linked immunosorbent assay (ELISA), and fluorescence spectroscopy were applied. Successful detection of AGE, dityrosine, MDA, and HNE occurred in semen and saliva via SPRi, while only dityrosine was detected in urine. Protein carbonyls were measured in all body fluids, but only in saliva was a significant increase observed over time. Additionally, protein fluorescence loss and fluorescent oxidation product formation were assessed, showing significant decreases in semen and saliva, but not in urine. Although optimization is needed for accurate quantification, this study reveals detectable markers for protein and lipid oxidation in aging body fluids, warranting further investigation.
MULTIFILE
Detection and identification of body fluids are crucial aspects of forensic investigations, aiding in crime scene reconstructions and providing important leads. Although many methods have been developed for these purposes, no method is currently in use in the forensic field that allows rapid, non-contact detection and identification of vaginal fluids directly at the crime scene. The development of such technique is mainly challenged by the complex chemistry of the constituents, which can differ between donors and exhibits changes based on woman’s menstrual cycle. The use of fluorescence spectroscopy has shown promise in this area for other biological fluids. Therefore, the aim of this study was to identify specific fluorescent signatures of vaginal fluid with fluorescence spectroscopy to allow on-site identification. Additionally, the fluorescent properties were monitored over time to gain insight in the temporal changes of the fluorescent spectra of vaginal fluid. The samples were excited at wavelengths ranging from 200 to 600 nm and the induced fluorescence emission was measured from 220 to 700 nm. Excitation and emission maps (EEMs) were constructed for eight donors at seven time points after donation. Four distinctive fluorescence peaks could be identified in the EEMs, indicating the presence of proteins, fluorescent oxidation products (FOX), and an unidentified component as the dominant contributors to the fluorescence. To further asses the fluorescence characteristics of vaginal fluid, the fluorescent signatures of protein and FOX were used to monitor protein and lipid oxidation reactions over time. The results of this study provide insights into the intrinsic fluorescent properties of vaginal fluid over time which could be used for the development of a detection and identification method for vaginal fluids. Furthermore, the observed changes in fluorescence signatures over time could be utilized to establish an accurate ageing model.
Increasing awareness of the impact of frailty on elderly people resulted in research focusing on factors that contribute to the development and persistence of frailty including nutrition and physical activity. Most effort so far has been spent on understanding the association between protein intake and the physical domain of frailty. Far less is known for other domains of frailty: Cognition, mood, social health and comorbidity. Therefore, in the present narrative review, we elaborate on the evidence currently known on the association between protein and exercise as well as the broader concept of frailty. Most, but not all, identified studies concluded that low protein intake is associated with a higher prevalence and incidence of physical frailty. Far less is known on the broader concept of frailty. The few studies that do look into this association find a clear beneficial effect of physical activity but no conclusions regarding protein intake can be made yet. Similar, for other important aspects of frailty including mood, cognition, and comorbidity, the number of studies are limited and results are inconclusive. Future studies need to focus on the relation between dietary protein and the broader concept of frailty and should also consider the protein source, amount and timing.