From the publisher: "Background: The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). Main body: The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. Conclusion: The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs." Authors: Jolanda H. M. van BilsenEmail author, Edyta Sienkiewicz-Szłapka, Daniel Lozano-Ojalvo, Linette E. M. Willemsen, Celia M. Antunes, Elena Molina, Joost J. Smit, Barbara Wróblewska, Harry J. Wichers, Edward F. Knol, Gregory S. Ladics, Raymond H. H. Pieters, Sandra Denery-Papini, Yvonne M. Vissers, Simona L. Bavaro, Colette Larré, Kitty C. M. Verhoeckx and Erwin L. Roggen
LINK
The protein transition from animal towards plant proteins, is driven by the growth of the world’s population combined with a rising standard of living. Over the last five years, this has already resulted in a 7-fold increase in product launches with a plant-based claim or notification. This manuscript gives an overview of current, emerging and future protein sources and their use to replace protein in dairy and meat products as well as egg proteins. Currently, a major focus is on the development of products that mimic the original product the most, for example the best meat alternative. However, the question arises if this is enough to change the overall balance between animal and plant proteins? The outlook discusses the demand for a better understanding of consumer needs and preferences.
LINK
Flyer with information about the lectureship INVIS, HAS Hogeschool. Extend and integrate knowledge, experience, and education on healthy and safe insect and fish culture: Investigate risk factors and support the use of healthy and safe insects in aquaculture feed in cooperation with feed processors.
DOCUMENT
Fish and vegetable protein sources are relatively underutilized for human consumption in comparison to meat, dairy and egg protein sources. Only part of the available fish proteins is used: fish is to small for human consumption and fish has a high proportion of by-products, up to 50% of fish weight is not used. This project aims to develop products and processes for creating healthy high valued consumer products based upon vegetable proteins and fish/crustacean proteins from by-products or from neglected fish. Three innovative processes are developed:1) Iso-electric solubilization and precipitation of fish/crustacean proteins from by-products,2) Networked vegetable/fish protein textures based upon low moisture extrusion processes3) Fibrous vegetable/fish protein textures produced with high moisture extrusion processes.Two innovative processes are applied:1) Food products with water-oil-water emulsions with isolated fish proteins2) Food products with sous-vide prepared fish fillets in semi industrial context.Different consumer product prototypes will be developed like fish nuggets, fish flakes and fish crackers.The Nuprotex project created successfully two new processes. Hanzehogeschool developed the process for fish protein isolation based upon iso electric solubilization and precipitation. With this process it was possible to recover about 15% weight of additional proteins from fish by-products. Please be aware that the yield of fish fillets from the fish is only about 30% of fish weight. So this is an important increase in food grade proteins! These Isolated Fish Proteins are successfully converted into several consumer prototype products like multiple emulsions for savory liquid products and fish cake/cracker applications. A sous-vide cooking process for fish fillets was developed with respect to microbial safety. It was shown that a microbial safe route could be developed, however further research is necessary to confirm these preliminary results.DIL has developed successfully an high moisture extrusion process for isolated fish proteins, grinded fish by products and vegetable proteins. This semi-finished product is successfully applied by for developing deep fried fish nuggets and fish burgers. DIL produced fish pellets which are suitable for applications as fish feed as is demonstrated in actual trials. Further research must demonstrate the quality of the feed product in actual growth experiments with fish.This project has clearly demonstrated that it is possible to produce with fish by-products added value consumer products. A possible increase of food-grade fish protein of about 15% on fresh weight base of processed fish is possible.
DOCUMENT
Plant-based proteins, like water lentils, generally result in lower environmental impact compared to animal-based protein.
DOCUMENT
Introduction: The kinetics of protein oxidation, monitored in breath, and its contribution to the whole body protein status is not well established. Objectives: To analyze protein oxidation in various metabolic conditions we developed/validated a 13C-protein oxidation breath test using low enriched milk proteins. Method/Design: 30 g of naturally labeled 13C-milk proteins were consumed by young healthy volunteers. Breath samples were taken every 10 min and 13CO2 was measured by Isotope Ratio Mass Spectrometry. To calculate the amount of oxidized substrate we used: substrate dose, molecular weight and 13C enrichment of the substrate, number of carbon atoms in a substrate molecule, and estimated CO2-production of the subject based on body surface area. Results: We demonstrated that in 255 min 20% ± 3% (mean ± SD) of the milk protein was oxidized compared to 18% ± 1% of 30 g glucose. Postprandial kinetics of oxidation of whey (rapidly digestible protein) and casein (slowly digestible protein) derived from our breath test were comparable to literature data regarding the kinetics of appearance of amino acids in blood. Oxidation of milk proteins was faster than that of milk lipids (peak oxidation 120 and 290 minutes, respectively). After a 3-day protein restricted diet (~10 g of protein/day) a decrease of 31% ± 18% in milk protein oxidation was observed compared to a normal diet. Conclusions: Protein oxidation, which can be easily monitored in breath, is a significant factor in protein metabolism. With our technique we are able to characterize changes in overall protein oxidation under various meta-bolic conditions such as a protein restricted diet, which could be relevant for defining optimal protein intake under various conditions. Measuring protein oxidation in new-born might be relevant to establish its contribution to the protein status and its age-dependent development.
LINK
This research is commissioned by the professorship Novel Proteins: Insects and Fish, Healthy, Sustainable and Safe (INVIS) and conducted with the aim to investigate the constraints that hinder the uptake of insect-based feed in the Dutch finfish aquaculture branch and advise upon how to initiate a transition within the branch to adopt insect meal in fish feed widely. This is a underlying report of the webinar Insect culture in the Netherlands for feed and food on January 19, 2021.
DOCUMENT
We developed a lesson where students construct a qualitative representation to learn how clock genes are regulated. Qualitative representations provide a non-numerical description of system behavior, focusing on causal relation-ships and system states. They align with human reasoning about system dy-namics and serve as valuable learning tools for understanding both domain-specific systems and developing broader systems thinking skills.The lesson, designed for upper secondary and higher education, is imple-mented in the DynaLearn software at Level 4, where students can model feedback loops. Students construct the representation step by step, guided by a structured workbook and built-in support functions within the software. At each step, they run simulations to examine system behavior and reflect on the results through workbook questions. To ensure scientific accuracy, the representation and workbook were evaluated by domain experts.The lesson begins with modeling how increasing BMAL:CLOCK activity enhances the transcription of PER and CRY genes through binding to the E-box. Next, students explore how mRNA production and degradation—two opposing processes—regulate mRNA levels. This is followed by modeling translation at the ribosomes, where PER and CRY proteins are synthesized and subsequently degraded, again illustrating competing regulatory process-es. Students then model how PER and CRY proteins form a complex that translocates to the nucleus, inhibiting CLOCK:BMAL binding and establish-ing a negative feedback loop. Finally, they extend their understanding by ex-ploring how CLOCK:BMAL also regulates the AVP gene, linking clock genes to broader physiological processes.
MULTIFILE
This report presents the highlights of the 7th European Meeting on Molecular Diagnostics held in Scheveningen, The Hague, The Netherlands, 12-14 October 2011. The areas covered included molecular diagnostics applications in medical microbiology, virology, pathology, hemato-oncology,clinical genetics and forensics. Novel real-time amplification approaches, novel diagnostic applications and new technologies, such as next-generation sequencing, PCR lectrospray-ionization TOF mass spectrometry and techniques based on the detection of proteins or other molecules, were discussed. Furthermore, diagnostic companies presented their future visions for molecular diagnostics in human healthcare.
DOCUMENT
Whether going fully vegan or embracing a more ‘flexitarian’ lifestyle, consumers are switching to plantbased food options in ever-increasing numbers. With 9 billion people to feed in the world in 2050, there are many reasons why: from perceived benefits for people’s own health and wellbeing, to concerns about animal welfare and the environmental impact of meat farming, or just the desire to be ‘on trend’.Interview with Fred van de Velde, professor and researcher at HAS University of Applied Science.
LINK