BACKGROUND: Recent evidence suggests that an increase in baccalaureate-educated registered nurses (BRNs) leads to better quality of care in hospitals. For geriatric long-term care facilities such as nursing homes, this relationship is less clear. Most studies assessing the relationship between nurse staffing and quality of care in long-term care facilities are US-based, and only a few have focused on the unique contribution of registered nurses. In this study, we focus on BRNs, as they are expected to serve as role models and change agents, while little is known about their unique contribution to quality of care in long-term care facilities. METHODS: We conducted a cross-sectional study among 282 wards and 6,145 residents from 95 Dutch long-term care facilities. The relationship between the presence of BRNs in wards and quality of care was assessed, controlling for background characteristics, i.e. ward size, and residents' age, gender, length of stay, comorbidities, and care dependency status. Multilevel logistic regression analyses, using a generalized estimating equation approach, were performed. RESULTS: 57% of the wards employed BRNs. In these wards, the BRNs delivered on average 4.8 min of care per resident per day. Among residents living in somatic wards that employed BRNs, the probability of experiencing a fall (odds ratio 1.44; 95% CI 1.06-1.96) and receiving antipsychotic drugs (odds ratio 2.15; 95% CI 1.66-2.78) was higher, whereas the probability of having an indwelling urinary catheter was lower (odds ratio 0.70; 95% CI 0.53-0.91). Among residents living in psychogeriatric wards that employed BRNs, the probability of experiencing a medication incident was lower (odds ratio 0.68; 95% CI 0.49-0.95). For residents from both ward types, the probability of suffering from nosocomial pressure ulcers did not significantly differ for residents in wards employing BRNs. CONCLUSIONS: In wards that employed BRNs, their mean amount of time spent per resident was low, while quality of care on most wards was acceptable. No consistent evidence was found for a relationship between the presence of BRNs in wards and quality of care outcomes, controlling for background characteristics. Future studies should consider the mediating and moderating role of staffing-related work processes and ward environment characteristics on quality of care.
This paper reports the responses of nursing home residents who live in a psychogeriatric ward to the abstract interactive art installation ‘Morgendauw’, which was specifically designed for this study. All stakeholders were involved in designing and implementing Morgendauw. The artwork seems able to evoke responses in both the residents and their caregivers, but the amount and duration of the responses observed during the study were limited. 15 interactions over the course of 14 h were noted and almost all of them were initiated by the nursing home staff, physiotherapy students or visitors (n = 12). Interactions lasted for about 3 min on average. Although the nursing home residents initially did not seem to notice the artwork, the threshold of acknowledging and approaching the artwork was quickly overcome when staff nudged or directed the residents’ attention towards the artwork. Beyond this point, nursing home residents generally needed little explanation of the interface to interact with the artwork. The location in which Morgendauw was placed during the study or the characteristics of the installation seemed to create a threshold. Further research should focus on the importance and the effects of context when designing and implementing an interactive art installation in a nursing home environment.
The prevention and diagnosis of frailty syndrome (FS) in cardiac patients requires innovative systems to support medical personnel, patient adherence, and self-care behavior. To do so, modern medicine uses a supervised machine learning approach (ML) to study the psychosocial domains of frailty in cardiac patients with heart failure (HF). This study aimed to determine the absolute and relative diagnostic importance of the individual components of the Tilburg Frailty Indicator (TFI) questionnaire in patients with HF. An exploratory analysis was performed using machine learning algorithms and the permutation method to determine the absolute importance of frailty components in HF. Based on the TFI data, which contain physical and psychosocial components, machine learning models were built based on three algorithms: a decision tree, a random decision forest, and the AdaBoost Models classifier. The absolute weights were used to make pairwise comparisons between the variables and obtain relative diagnostic importance. The analysis of HF patients’ responses showed that the psychological variable TFI20 diagnosing low mood was more diagnostically important than the variables from the physical domain: lack of strength in the hands and physical fatigue. The psychological variable TFI21 linked with agitation and irritability was diagnostically more important than all three physical variables considered: walking difficulties, lack of hand strength, and physical fatigue. In the case of the two remaining variables from the psychological domain (TFI19, TFI22), and for all variables from the social domain, the results do not allow for the rejection of the null hypothesis. From a long-term perspective, the ML based frailty approach can support healthcare professionals, including psychologists and social workers, in drawing their attention to the nonphysical origins of HF.