In this paper, we experimentally compare orthogonal frequency-division multiplexing (OFDM) and on-off keying (OOK) modulation in the context of the IEEE 802.15.13-2023 standard at bandwidths up to 50 MHz across a Li-Fi link with distances up to 5 m and a lateral offset up to 51°. Error vector magnitude (EVM) and bit error rate (BER) evaluations confirm that the high peak-to-average power ratio (PAPR) of OFDM limits the achievable transmission distance, but it offers higher data rates due to its higher spectral efficiency. Due to the lower PAPR, OOK-based Pulsed Modulation PHY (PM-PHY) shows a significantly higher link range. As the structure of the PM-PHY is based on OFDM symbols, the two solutions may also be combined to open a wider range of use cases for optical wireless communications.
LINK
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Particle image velocimetry has been widely used in various sectors from the automotive to aviation, research, and development, energy, medical, turbines, reactors, electronics, education, refrigeration for flow characterization and investigation. In this study, articles examined in open literature containing the particle image velocimetry techniques are reviewed in terms of components, lasers, cameras, lenses, tracers, computers, synchronizers, and seeders. The results of the evaluation are categorized and explained within the tables and figures. It is anticipated that this paper will be a starting point for researchers willing to study in this area and industrial companies willing to include PIV experimenting in their portfolios. In addition, the study shows in detail the advantages and disadvantages of past and current technologies, which technologies in existing PIV laboratories can be renewed, and which components are used in the PIV laboratories to be installed.
DOCUMENT
Spectral imaging has many applications, from methane detection using satellites to disease detection on crops. However, spectral cameras remain a costly solution ranging from 10 thousand to 100 thousand euros for the hardware alone. Here, we present a low-cost multispectral camera (LC-MSC) with 64 LEDs in eight different colors and a monochrome camera with a hardware cost of 340 euros. Our prototype reproduces spectra accurately when compared to a reference spectrometer to within the spectral width of the LEDs used and the ±1σ variation over the surface of ceramic reference tiles. The mean absolute difference in reflectance is an overestimate of 0.03 for the LC-MSC as compared to a spectrometer, due to the spectral shape of the tiles. In environmental light levels of 0.5 W m−2 (bright artificial indoor lighting) our approach shows an increase in noise, but still faithfully reproduces discrete reflectance spectra over 400 nm–1000 nm. Our approach is limited in its application by LED bandwidth and availability of specific LED wavelengths. However, unlike with conventional spectral cameras, the pixel pitch of the camera itself is not limited, providing higher image resolution than typical high-end multi- and hyperspectral cameras. For sample conditions where LED illumination bands provide suitable spectral information, our LC-MSC is an interesting low-cost alternative approach to spectral imaging.
MULTIFILE
PURPOSE: The objectives of this review are to summarize the current practices and major recent advances in critical care nutrition and metabolism, review common beliefs that have been contradicted by recent trials, highlight key remaining areas of uncertainty, and suggest recommendations for the top 10 studies/trials to be done in the next 10 years.METHODS: Recent literature was reviewed and developments and knowledge gaps were summarized. The panel identified candidate topics for future trials in critical care nutrition and metabolism. Then, members of the panel rated each one of the topics using a grading system (0-4). Potential studies were ranked on the basis of average score.RESULTS: Recent randomized controlled trials (RCTs) have challenged several concepts, including the notion that energy expenditure must be met universally in all critically ill patients during the acute phase of critical illness, the routine monitoring of gastric residual volume, and the value of immune-modulating nutrition. The optimal protein dose combined with standardized active and passive mobilization during the acute phase and post-acute phase of critical illness were the top ranked studies for the next 10 years. Nutritional assessment, nutritional strategies in critically obese patients, and the effects of continuous versus intermittent enteral nutrition were also among the highest-ranking studies.CONCLUSIONS: Priorities for clinical research in the field of nutritional management of critically ill patients were suggested, with the prospect that different nutritional interventions targeted to the appropriate patient population will be examined for their effect on facilitating recovery and improving survival in adequately powered and properly designed studies, probably in conjunction with physical activity.
DOCUMENT
In this paper we outline the design process of TaSST (Tactile Sleeve for Social Touch), a touch-sensitive vibrotactile arm sleeve. The TaSST was designed to enable two people to communicate different types of touches over a distance. The touch-sensitive surface of the sleeve consists of a grid of 4x3 compartments filled with conductive wool. Each compartment controls the vibration intensity of a vibration motor, located in a grid of 4x3 motors beneath the touch sensitive layer. An initial evaluation of the TaSST was conducted in order to assess its capabilities for communicating different types of touch.
DOCUMENT
Exercise is one of the external factors associated with impairment of intestinal integrity, possibly leading to increased permeability and altered absorption. Here, we aimed to examine to what extent endurance exercise in the glycogen‐depleted state can affect intestinal permeability toward small molecules and protein‐derived peptides in relation to markers of intestinal function. Eleven well‐trained male volunteers (27 ± 4 years) ingested 40 g of casein protein and a lactulose/rhamnose (L/R) solution after an overnight fast in resting conditions (control) and after completing a dual – glycogen depletion and endurance – exercise protocol (first protocol execution). The entire procedure was repeated 1 week later (second protocol execution). Intestinal permeability was measured as L/R ratio in 5 h urine and 1 h plasma. Five‐hour urine excretion of betacasomorphin‐7 (BCM7), postprandial plasma amino acid levels, plasma fatty acid binding protein 2 (FABP‐2), serum pre‐haptoglobin 2 (preHP2), plasma glucagon‐like peptide 2 (GLP2), serum calprotectin, and dipeptidylpeptidase‐4 (DPP4) activity were studied as markers for excretion, intestinal functioning and recovery, inflammation, and BCM7 breakdown activity, respectively. BCM7 levels in urine were increased following the dual exercise protocol, in the first as well as the second protocol execution, whereas 1 h‐plasma L/R ratio was increased only following the first exercise protocol execution. FABP2, preHP2, and GLP2 were not changed after exercise, whereas calprotectin increased. Plasma citrulline levels following casein ingestion (iAUC) did not increase after exercise, as opposed to resting conditions. Endurance exercise in the glycogen depleted state resulted in a clear increase of BCM7 accumulation in urine, independent of DPP4 activity and intestinal permeability. Therefore, strenuous exercise could have an effect on the amount of food‐derived bioactive peptides crossing the epithelial barrier. The health consequence of increased passage needs more in depth studies.
DOCUMENT
Background Psychological aspects of labor and birth have received little attention within maternity care service planning or clinical practice. The aim of this paper is to propose a model demonstrating how neurohormonal processes, in particular oxytocinergic mechanisms, not only control the physiological aspects of labor and birth, but also contribute to the subjective psychological experiences of birth. In addition, sensory information from the uterus as well as the external environment might influence these neurohormonal processes thereby influencing the progress of labor and the experience of birth. Methodology In this new model of childbirth, we integrated the findings from two previous systematic reviews, one on maternal plasma levels of oxytocin during physiological childbirth and one meta-synthesis of women´s subjective experiences of physiological childbirth. Findings The neurobiological processes induced by the release of endogenous oxytocin during birth influence maternal behaviour and feelings in connection with birth in order to facilitate birth. The psychological experiences during birth may promote an optimal transition to motherhood. The spontaneous altered state of consciousness, that some women experience, may well be a hallmark of physiological childbirth in humans. The data also highlights the crucial role of one-to-one support during labor and birth. The physiological importance of social support to reduce labor stress and pain necessitates a reconsideration of many aspects of modern maternity care. Conclusion By listening to women’s experiences and by observing women during childbirth, factors that contribute to an optimized process of labor, such as the mothers’ wellbeing and feelings of safety, may be identified. These observations support the integrative role of endogenous oxytocin in coordinating the neuroendocrine, psychological and physiological aspects of labor and birth, including oxytocin mediated. decrease of pain, fear and stress, support the need for midwifery one-to-one support in labour as well as the need for maternity care that optimizes the function of these neuroendocrine processes even when birth interventions are used. Women and their partners would benefit from understanding the crucial role that endogenous oxytocin plays in the psychological and neuroendocrinological process of labor.
DOCUMENT
PurposeThe aim of this study is to evaluate the feasibility of a telehealthcare application for operable lung cancer (OLC) patients, consisting of ambulant symptom and physical activity monitoring (S&PAM) and a web-accessible home-based exercise program (WEP), and identify possible barriers for successful adoption and implementation.MethodsA two-stage mixed methods design was used, in which 22 OLC patients and their treating healthcare professionals (HCPs) participated from pre-surgery to three (stage 1; n = 10) or six (stage 2; n = 12) months post-surgery. Actual use and acceptability (usability, usefulness, and satisfaction) were evaluated.ResultsSeventeen OLC patients (age (SD): 59 (8) years; 8 female) actively used the modules. S&PAM use varied from 1 to 11 monitoring days prior to outpatient consultations. Patients used WEP most frequently during the first 5 weeks, with an average of four logins a week. Fifty-eight percent used WEP beyond 7 weeks. No adverse situations occurred, and patients felt confident using the applications.Perceived added value included active lifestyle promotion, decreased anxiety, and accessibility to specialized HCPs. Physiotherapists used WEP as intended. Contrarily, physicians scarcely used information from S&PAM. To promote future adoption, strategies should focus on high-level patient tailoring of the technology, and formalization of including the applications in the clinical workflow.ConclusionsAmbulant monitoring and web-accessible home exercise is clinically feasible for OLC patients. However, low level of adoption by referring physicians may hamper successful implementation.Implications for cancer survivorsPatients perceived both ambulant monitoring and web-accessible exercise as an added value to regular care and feasible to use in the period before and after lung resection.
MULTIFILE
With a market demand for low cost, easy to produce, flexible and portable applications in healthcare, energy, biomedical or electronics markets, large research programs are initiated to develop new technologies to provide this demand with new innovative ideas. One of these fast developing technologies is organic printed electronics. As the term printed electronics implies, functional materials are printed via, e.g. inkjet, flexo or gravure printing techniques, on to a substrate material. Applications are, among others, organic light emitting diodes (OLED), sensors and Lab-on-a-chip devices. For all these applications, in some way, the interaction of fluids with the substrate is of great importance. The most used substrate materials for these low-cost devices are (coated) paper or plastic. Plastic substrates have a relatively low surface energy which frequently leads to poor wetting and/or poor adhesion of the fluids on the substrates during printing and/ or post-processing. Plasma technology has had a long history in treating materials in order to improve wetting or promote adhesion. The µPlasma patterning tool described in this thesis combines a digital inkjet printing platform with an atmospheric dielectric barrier discharge plasma tool. Thus enabling selective and local plasma treatment, at atmospheric pressure, of substrates without the use of any masking materials. In this thesis, we show that dependent on the gas composition the substrate surface can either be functionalized, thus increasing its surface energy, or material can be deposited on the surface, lowering its surface energy. Through XPS and ATR-FTIR analysis of the treated (polymer) substrate surfaces, chemical modification of the surface structure was confirmed. The chemical modification and wetting properties of the treated substrates remained present for at least one month after storage. Localized changes in wettability through µPlasma patterning were obtained with a resolution of 300µm. Next to the control of wettability of an ink on a substrate in printed electronics is the interaction of ink droplets with themselves of importance. In printing applications, coalescence of droplets is standard practice as consecutive droplets are printed onto, or close to each other. Understanding the behaviour of these droplets upon coalescence is therefore important, especially when the ink droplets are of different composition and/or volume. For droplets of equal volume, it was found that dye transport across the coalescence bridge could be fully described by diffusion only. This is as expected, as due to the droplet symmetry on either side of the bridge, the convective flows towards the bridge are of equal size but opposite in direction. For droplets of unequal volume, the symmetry across the bridge is no longer present. Experimental analysis of these merging droplets show that in the early stages of coalescence a convective flow from the small to large droplet is present. Also, a smaller convective flow of shorter duration from the large into the small droplet was identified. The origin of this flow might be due to the presence of vortices along the interface of the bridge, due to the strong transverse flow to open the bridge. To conclude, three potential applications were showcased. In the first application we used µPlasma patterning to create hydrophilic patterns on hydrophobic dodecyl-trichlorosilane (DTS) covered glass. Capillaries for a Lab-on-a-chip device were successfully created by placing two µPlasma patterned glass slides on top of each other separated by scotch tape. In the second application we showcased the production of a RFID tag via inkjet printing. Functional RFID-tags on paper were created via inkjet printing of silver nanoparticle ink connected to an integrated circuit. The optimal operating frequency of the produced tags is in the range of 860-865 MHz, making them usable for the European market, although the small working range of 1 m needs further improvement. Lastly, we showed the production of a chemresistor based gas sensor. In house synthesised polyemeraldine salt (PANi) was coated by hand on top of inkjet printed silver electrodes. The sensor proved to be equally sensitive to ethanol and water vapour, reducing its selectivity in detecting changes in gas composition.
DOCUMENT