In the dynamic environment of increasing regulations, increasing patient demand, decentralization of budgets and enforcement of efficiency, small sized healthcare institutions in the Netherlands are having a difficult time. Although these service providers are usually capable of flexibly delivering healthcare, the investment and overhead for implementing and executing on required quality management standards like ISO 9001 is difficult. In this paper we construct a method for the implementation of an IT-enabled quality management system for small sized healthcare institutions, which is applied through case study. The case organisation provides intra- and extramural care for mentally handicapped persons and young adults with a psychiatric disorder. The quality management system implementation is based on 1) a lightweight IT infrastructure (based at a secure data centre and accessible through remote login) implying secure storage of patients' medical and personal information. Furthermore, the Deming (Deming, 1982) cycle enabled processes and protocols are 2) described in an e-handbook and prototyped via an open source process management system which supports the quality regulation demanded for providing care to patients. The case study supports the validity of our method and the fact that small sized healthcare institutions are able to execute their care while adhering to ISO 9001-like standards, with limited initial costs and relatively low cost of ownership
DOCUMENT
Experts like Jouslin de Noray, Shiba and Hardjono discern three paradigms in quality management: control, continuous improvement and breakthrough. Van Kemenade argues that before being able to reach breakthrough you need another paradigm: commitment.
DOCUMENT
OBJECTIVE: To conduct a randomized controlled trial and compare the effects on cancer survivors' quality of life in a 12-week group-based multidisciplinary self-management rehabilitation program, combining physical training (twice weekly) and cognitive-behavioral training (once weekly) with those of a 12-week group-based physical training (twice weekly). In addition, both interventions were compared with no intervention.METHODS: Participants (all cancer types, medical treatment completed > or = 3 months ago) were randomly assigned to multidisciplinary rehabilitation (n = 76) or physical training (n = 71). The nonintervention comparison group consisted of 62 patients on a waiting list. Quality of life was measured using the RAND-36. The rehabilitation groups were measured at baseline, after rehabilitation, and 3-month follow-up, and the nonintervention group was measured at baseline and 12 weeks later.RESULTS: The effects of multidisciplinary rehabilitation did not outperform those of physical training in role limitations due to emotional problem (primary outcome) or any other domains of quality of life (all p > .05). Compared with no intervention, participants in both rehabilitation groups showed significant and clinically relevant improvements in role limitations due to physical problem (primary outcome; effect size (ES) = 0.66), and in physical functioning (ES = 0.48), vitality (ES = 0.54), and health change (ES = 0.76) (all p < .01).CONCLUSIONS: Adding a cognitive-behavioral training to group-based self-management physical training did not have additional beneficial effects on cancer survivors' quality of life. Compared with the nonintervention group, the group-based self-management rehabilitation improved cancer survivors' quality of life.
DOCUMENT
In dit project zal een online onderwijsmodule worden ontworpen. In deze module zal een deel van de output van het project Bouwen met Levende Natuur worden verwerkt tot onderwijs. Het maken van online course materiaal binnen de HZ onderwijsonwikkeling, waar zowel echte casuistiek uit de de beroepspraktijk, als gebruik van ICT mogelijkheden centraal staan. Door de modulaire opbouw zal het mogelijk zijn onderdelen in verschillende courses te verwerken. De docent kan dan de module naar eigen wens, en onafhankelijk van de beschikbaarheid van interne of externe gastdocenten, inzetten voor ‘blended learning’. De benadering binnen de learning unit(s) volgt het constructivisme, activiteiten die te maken hebben met kennisoverdracht, zullen derhalve worden afgewisseld met verwerkingsopdrachten. De volledige onderwijsmodule richt zich vooral op onderwijs op het gebied van Coastal Engineering van de opleiding Civiele Techniek (CT), in eerste instantie van de Delta Academy; CT studenten blijken behoefte te hebben aan een uitleg van ecologische principes vanuit vanuit een meer technisch perspectief. De learning units/onderwijsmodule is uiteraard ook beschikbaar voor andere hbo opleidingen. Het geselecteerde gedeelte, de eerste learning unit, zal ook bruikbaar zijn voor de course Integrated Coastal Zone Management (ICZM), waarin oa het concept Building with Nature wordt uitgelegd. In de huidige vorm wordt dit onderdeel op de klassieke manier gebracht, in de vorm van een hoorcollege. De ontwikkeling van online materiaal maakt de afwisseling met het verwerken van de aangebrachte kennis eenvoudiger; de structuur daarvoor wordt in de online versie al aangebracht. Deze learning unit brengt niet alleen wat aanvullende benaderingen vanuit technisch perspectief, maar is ook een aanpassing, die het geheel hestructureert volgens het constructivisme. De course ICZM is een keuze-course, bedoeld voor Aquatische Ecotechnologie (AET), Delta Management (DM) en CT studenten; waar CT studenten meer behoefte hebben aan een technisch perspectief, heeft deze course ook te maken met DM studenten, die juist wat meer kennis zouden moeten maken met meer technische benaderingen.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
Promoting entrepreneurship is an enabler of smart, sustainable and inclusive growth and it is one objective EU regions have pursued since the EC included it into 2020 Strategy. Entrepreneurship development has economic and social benefits, since it is not only a driving force for job creation, competitiveness and growth; it also contributes to personal fulfillment and to achieve social objectives. That is why the EU encourages entrepreneurial initiatives and to unlock the growth potential of businesses and citizens. However, only a 37% of Europeans (Eurobarometer 2012) would like to be self-employed. The Entrepreneurship Action Plan adopted by the EC in 2013 to reignite Europe’s entrepreneurial spirit includes initiatives for educating young people on entrepreneurship. To ensure that EU economy remains globally competitive, young generations of Europeans need to be inspired to develop their entrepreneurial mindset. EU 2020 Action Plan argues that young people benefitting of a specialised entrepreneurial education are more likely to start-up a business and to better tackle challenges in their professional career and life in general. Hence, there is good reason to ensure better quality of entrepreneurial education. Most approaches in recent years have focused on improving the skills or competences youngsters should obtain only within the education system. However, an integrated approach is needed, where the school, their friends, family and the social environment, shall play each one a relevant role, contributing to generate a more adequate atmosphere to boost their entrepreneurial mindsets, intrapreneurial attitudes and innovation capacities. This project will identify and exchange – through a quadruple helix approach- good practices for creating friendlier entrepreneurial ecosystems and actions to boost entrepreneurship in young people mindsets. The good practices and lessons learnt will be transferred into Action Plans to be included in regional policies.