Abstract—A survey was conducted among 20 Dutch hospitals about radiation protection for interventional fluoroscopy. This was a follow-up of a previous study in 2007 that led to several recommendations for radiation protection for interventional fluoroscopy. The results indicate that most recommendations have been followed. However, radiation-induced complications from interventional procedures are still often not recorded in the appropriate register. Furthermore, even though professionals with appropriate training in radiation protection are usually involved in interventional procedures, this often is not the case when these procedures are carried out outside the radiology department. Although this involvement is not required by Dutch law, it is recommended to have radiation protection professionals present more often at interventional procedures. Further improvements in radiation protection for interventional fluoroscopy may come from a comparison of dose-reducing practices among hospitals, the introduction of diagnostic reference levels for interventional procedures, and a more thorough form of screening and follow-up of patients
DOCUMENT
Abstract: Since the first Oxford Survey of Childhood Cancer’s results were published, people have become more aware of the risks associated with prenatal exposure from diagnostic x rays. As a result, it has since been the subject of many studies. In this review, the results of recent epidemiological studies are summarized. The current international guidelines for diagnostic x-ray examinations were compared to the review. All epidemiological studies starting from 2007 and all relevant international guidelines were included. Apart from one study that involved rhabdomyosarcoma, no statistically significant associations were found between prenatal exposure to x rays and the development of cancer during 2007–2020. Most of the studies were constrained in their design due to too small a cohort or number of cases, minimal x-ray exposure, and/or data obtained from the exposed mothers instead of medical reports. In one of the studies, computed tomography exposure was also included, and this requires more and longer follow-up in successive studies. Most international guidelines are comparable, provide risk coefficients that are quite conservative, and discourage abdominal examinations of pregnant women.
DOCUMENT
Atherosclerosis is the development of lipid-laden plaques in arteries and is nowadays considered as an inflammatory disease. It has been shown that high doses of ionizing radiation, as used in radiotherapy, can increase the risk of development or progression of atherosclerosis. To elucidate the effects of radiation on atherosclerosis, we propose a mathematical model to describe radiation-promoted plaque evelopment. This model distinguishes itself from other models by combining plaque initiation and plaque growth, and by incorporating information from biological experiments. It is based on two consecutive processes: a probabilistic dose-dependent plaque initiation process, followed by deterministic plaque growth.
DOCUMENT
INTRODUCTION: With the introduction of digital radiography, the feedback between image quality and over-exposure has been partly lost which in some cases has led to a steady increase in dose. Over the years the introduction of exposure index (EI) has been used to resolve this phenomenon referred to as 'dose creep'. Even though EI is often vendor specific it is always a related of the radiation exposure to the detector. Due to the nature of this relationship EI can also be used as a patient dose indicator, however this is not widely investigated in literature.METHODS: A total of 420 dose-area-product (DAP) and EI measurements were taken whilst varying kVp, mAs and body habitus on two different anthropomorphic phantoms (pelvis and chest). Using linear regression, the correlation between EI and DAP were examined. Additionally, two separate region of interest (ROI) placements/per phantom where examined in order to research any effect on EI.RESULTS: When dividing the data into subsets, a strong correlation between EI and DAP was shown with all R-squared values > 0.987. Comparison between the ROI placements showed a significant difference between EIs for both placements.CONCLUSION: This research shows a clear relationship between EI and radiation dose which is dependent on a wide variety of factors such as ROI placement, body habitus. In addition, pathology and manufacturer specific EI's are likely to be of influence as well.IMPLICATIONS FOR PRACTICE: The combination of DAP and EI might be used as a patient dose indicator. However, the influencing factors as mentioned in the conclusion should be considered and examined before implementation.
DOCUMENT
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
The worldwide rise of skin cancer incidence rates increases the need to investigate ultraviolet radiation (UVR), as it is one of the main causes of skin cancer. 1 A ’ u to UVR varies depending on different factors such as the location of the individual and shielding effects. In this analysis, we evaluated wearables at different body positions measuring ultraviolet radiation when worn during daily activities at different locations. First, we analyzed which of the body positions provide the most robust measurements. We then devised a new measure, the horizon shielding factor, to evaluate the effect of horizon shielding and explored if high/low horizon shielding factor values coincide with particular geospatial attributes.
DOCUMENT
INTRODUCTION: In the Netherlands, Diagnostic Reference Levels (DRLs) have not been based on a national survey as proposed by ICRP. Instead, local exposure data, expert judgment and the international scientific literature were used as sources. This study investigated whether the current DRLs are reasonable for Dutch radiological practice.METHODS: A national project was set up, in which radiography students carried out dose measurements in hospitals supervised by medical physicists. The project ran from 2014 to 2017 and dose values were analysed for a trend over time. In the absence of such a trend, the joint yearly data sets were considered a single data set and were analysed together. In this way the national project mimicked a national survey.RESULTS: For six out of eleven radiological procedures enough data was collected for further analysis. In the first step of the analysis no trend was found over time for any of these procedures. In the second step the joint analysis lead to suggestions for five new DRL values that are far below the current ones. The new DRLs are based on the 75 percentile values of the distributions of all dose data per procedure.CONCLUSION: The results show that the current DRLs are too high for five of the six procedures that have been analysed. For the other five procedures more data needs to be collected. Moreover, the mean weights of the patients are higher than expected. This introduces bias when these are not recorded and the mean weight is assumed to be 77 kg.IMPLICATIONS FOR PRACTICE: The current checking of doses for compliance with the DRLs needs to be changed. Both the procedure (regarding weights) and the values of the DRLs should be updated.
DOCUMENT
Introduction: In the Netherlands, Diagnostic Reference Levels (DRLs) have not been based on a national survey as proposed by ICRP. Instead, local exposure data, expert judgment and the international scientific literature were used as sources. This study investigated whether the current DRLs are reasonable for Dutch radiological practice. Methods: A national project was set up, in which radiography students carried out dose measurements in hospitals supervised by medical physicists. The project ran from 2014 to 2017 and dose values were analysed for a trend over time. In the absence of such a trend, the joint yearly data sets were considered a single data set and were analysed together. In this way the national project mimicked a national survey. Results: For six out of eleven radiological procedures enough data was collected for further analysis. In the first step of the analysis no trend was found over time for any of these procedures. In the second step the joint analysis lead to suggestions for five new DRL values that are far below the current ones. The new DRLs are based on the 75 percentile values of the distributions of all dose data per procedure. Conclusion: The results show that the current DRLs are too high for five of the six procedures that have been analysed. For the other five procedures more data needs to be collected. Moreover, the mean weights of the patients are higher than expected. This introduces bias when these are not recorded and the mean weight is assumed to be 77 kg. Implications for practice: The current checking of doses for compliance with the DRLs needs to be changed. Both the procedure (regarding weights) and the values of the DRLs should be updated.
MULTIFILE
This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as “sensors” or “sensor nodes”, that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.
MULTIFILE
In this work, in situ measurements of the radio frequency electromagnetic field exposure have been conducted for an indoor massive MIMO 5G base station operating at 26–28 GHz. Measurements were performed at six different positions (at distances between 9.94 and 14.32 m from the base station), of which four were in line-of-sight and two were in non-line-of-sight. A comparison was performed between the measurements conducted with an omnidirectional probe and with a horn antenna, for scenarios with and without a user equipment used to actively create an antenna traffic beam from the base station towards the measurement location. A maximum exposure of 171.9 mW/m2 was measured at a distance of 9.94 m from the base station. This is below 2% of the ICNIRP reference level. Moreover, the feasibility to measure the power per resource element of the Synchronization Signal Block - which can be used to extrapolate the maximum exposure level - with a conventional spectrum analyzer was shown by comparison with a network decoder.
MULTIFILE