In this book of examples we present possible implementations of straightforward and manageable climate-resilient ideas and options for residential streets. Examples from ordinary Dutch street views show how climate resilience can be implemented with simple solutions and how this does not need to be more costly than traditional measures, particularly in flat areas (such as we often find in the Netherlands). This observation is based on comparative studies across various Dutch cities. We hope that the examples will inspire you to find ways to implementclimate-resilient measures in your city, because the climate is right up your street.
This book of examples suggests a variety of options for easy and accessible climate-resilient retrofitting of residential areas. The case studies for a set of common streets in the Netherlands will match urban settings in other countries. The examples show that effective climate-resilient retrofitting is usually quite simple and does not necessarily incur higher costs than traditional approaches, particularly in flat areas. An examination of typical Dutch urban street designs shows how climate resilience can be incorporated under different conditions while keeping costs down with retrofitting. We have investigated the effects of four retrofitting variants and specified their cost and benefits, applying a typology of common residential street characteristics. We sincerely hope these case studies inspire you to get started in your own town, city and country, because the climate is right up your street.
'Versteende pleinen in steden zijn hitte-eilanden. Gemeenten willen daarom meer groen, maar dat is niet eenvoudig. In Groningen zijn nieuwe bomen geplant in een innovatief waterbergingssysteem. De Grote Markt ging op de schop.'
LINK
Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.