Social work in the Netherlands is attracting an increasing number of Turkish and Moroccan Dutch professionals, mostly second-generation migrant women from a Muslim background. Inspired by Amartya Sen’s capability approach, this article presents the findings of a qualitative content analysis of 40 interviews with professionals by peers from the same background. The question is, what kind of professionals do these newly started social workers desire to be and what hindrances do they encounter? The professionals challenge the dominance of Western beliefs and values. This becomes tangible in their desires and constraints and especially in the process of choice.
DOCUMENT
Cooperation is more likely upheld when individuals can choose their interaction partner. However, when individuals differ in their endowment or ability to cooperate, free partner choice can lead to segregation and increase inequality. To understand how decision-makers can decrease such inequality, we conducted an incentivized and preregistered experiment in which participants (n=500) differed in their endowment and cooperation productivity. First, we investigated how these individual differences impacted cooperation and inequality under free partner choice in a public goods game. Next, we calculated if and how decision-makers should restrict partner choice if their goal is to decrease inequality. Finally, we studied whether decision-makers actually did decrease inequality when asked to allocate endowment and productivity factors between individuals, and combine individuals into pairs of interaction partners for a two-player public goods game. Our results show that without interventions, free partner choice, indeed, leads to segregation and increases inequality. To mitigate such inequality, decision-makers should curb free partner choice and force individuals who were assigned different endowments and productivities to form pairs with each other. However, this comes at the cost of lower overall cooperation and earnings, showing that the restriction of partner choice results in an equality-efficiency trade-off. Participants who acted as third-parties were actually more likely to prioritize inequality reduction over efficiency maximization, by forcing individuals with unequal endowment and productivity levels to form pairs with each other. However, decision-makers who had a ‘stake in the game’ self-servingly navigated the equality-efficiency trade-off by preferring partner choice interventions that benefited themselves. These preferences were partly explained by norms on public good cooperation and redistribution, and participants’ social preferences. Results reveal potential conflicts on how to govern free partner choice stemming from diverging preferences ‘among unequals’.
MULTIFILE
Cooperation is more likely when individuals can choose their interaction partner. However, partner choice may be detrimental in unequal societies, in which individuals differ in available resources and productivity, and thus in their attractiveness as interaction partners. Here we experimentally examine this conjecture in a repeated public goods game. Individuals (n = 336), participating in groups of eight participants, are assigned a high or low endowment and a high or low productivity factor (the value that their cooperation generates), creating four unique participant types. On each round, individuals are either assigned a partner (assigned partner condition) or paired based on their self-indicated preference for a partner type (partner choice condition). Results show that under partner choice, individuals who were assigned a high endowment and high productivity almost exclusively interact with each other, forcing other individuals into less valuable pairs. Consequently, pre-existing resource differences between individuals increase. These findings show how partner choice in social dilemmas can amplify resource inequality.
MULTIFILE
This project assists architects and engineers to validate their strategies and methods, respectively, toward a sustainable design practice. The aim is to develop prototype intelligent tools to forecast the carbon footprint of a building in the initial design process given the visual representations of space layout. The prediction of carbon emission (both embodied and operational) in the primary stages of architectural design, can have a long-lasting impact on the carbon footprint of a building. In the current design strategy, emission measures are considered only at the final phase of the design process once major parameters of space configuration such as volume, compactness, envelope, and materials are fixed. The emission assessment only at the final phase of the building design is due to the costly and inefficient interaction between the architect and the consultant. This proposal offers a method to automate the exchange between the designer and the engineer using a computer vision tool that reads the architectural drawings and estimates the carbon emission at each design iteration. The tool is directly used by the designer to track the effectiveness of every design choice on emission score. In turn, the engineering firm adapts the tool to calculate the emission for a future building directly from visual models such as shared Revit documents. The building realization is predominantly visual at the early design stages. Thus, computer vision is a promising technology to infer visual attributes, from architectural drawings, to calculate the carbon footprint of the building. The data collection for training and evaluation of the computer vision model and machine learning framework is the main challenge of the project. Our consortium provides the required resources and expertise to develop trustworthy data for predicting emission scores directly from architectural drawings.
Our country contains a very dense and challenging transport and mobility system. National research agendas and roadmaps of multiple sectors such as HTSM, Logistics and Agri&food, promote vehicle automation as a means to increase transport safety and efficiency. SMEs applying vehicle automation require compliance to application/sector specific standards and legislation. A key aspect is the safety of the automated vehicle within its design domain, to be proven by manufacturers and assessed by authorities. The various standards and procedures show many similarities but also lead to significant differences in application experience and available safety related solutions. For example: Industrial AGVs (Automated Guided Vehicles) have been around for many years, while autonomous road vehicles are only found in limited testing environments and pilots. Companies are confronted with an increasing need to cover multiple application environments, such restricted areas and public roads, leading to complex technical choices and parallel certification/homologation procedures. SafeCLAI addresses this challenge by developing a framework for a generic safety layer in the control of autonomous vehicles that can be re-used in different applications across sectors. This is done by extensive consolidation and application of cross-sectoral knowledge and experience – including analysis of related standards and procedures. The framework promises shorter development times and enables more efficient assessment procedures. SafeCLAI will focus on low-speed applications since they are most wanted and technically best feasible. Nevertheless, higher speed aspects will be considered to allow for future extension. SafeCLAI will practically validate (parts) of the foreseen safety layer and publish the foreseen framework as a baseline for future R&D, allowing coverage of broader design domains. SafeCLAI will disseminate the results in the Dutch arena of autonomous vehicle development and application, and also integrate the project learnings into educational modules.
Circular agriculture is an excellent principle, but much work needs to be done before it can become common practice in the equine sector. In the Netherlands, diversification in this sector is growing, and the professional equine field is facing increasing pressure to demonstrate environmentally sound horse feeding management practices and horse owners are becoming more aware of the need to manage their horses and the land on which they live in a sustainable manner. Horses should be provided with a predominantly fibre-based diet in order to mimic their natural feeding pattern, however grazing impacts pasture differently, with a risk of overgrazing and soil erosion in equine pastures. Additionally, most horses receive supplements not only with concentrates and oils, but also with minerals. Though the excess minerals are excreted in the manure of horses, these minerals can accumulate in the soil or leach to nearby waterways and pollute water resources. Therefore, the postdoc research aims to answer the main question, “What horse feeding practices and measurements are needed to reduce and prevent environmental pollution in the Netherlands?” The postdoc research is composed of two components; a broad survey-based study which will generate quantitative data on horse feeding management and will also obtain qualitative data on the owners’ engagement or willingness of horse owners to act sustainably. Secondly, a field study will involve the collection of detailed data via visits to horse stables in order to gather data for nutritional analysis and to collect fecal samples for mineral analysis. Students, lecturers and partners will actively participate in all phases of the planned research. This postdoc research facilitates learning and intends to develop a footprint calculator for sustainable horse feeding to encompass the complexity of the equine sector, and to improve the Equine Sports and Business curriculum.