Equestrianism is currently facing a range of pressing challenges. These challenges, which are largely based on evolving attitudes to ethics and equine wellbeing, have consequences for the sport’s social licence to operate. The factors that may have contributed to the current situation include overarching societal trends, specific aspects of the equestrian sector, and factors rooted in human nature. If equestrianism is to flourish, it is evident that much needs to change, not the least,human behaviour. To this end, using established behaviour change frameworks that have been scientifically validated and are rooted in practice — most notably, Michie et al.’s COM-B model and Behaviour Change Wheel — could be of practical value for developing and implementing equine welfare strategies. This review summarises the theoretical underpinnings of some behaviour change frameworks and provides a practical, step-by-step approach to designing an effective behaviour change intervention. A real-world example is provided through the retrospective analysis of an intervention strategy that aimed to increase the use of learning theory in (educational) veterinary practice. We contend that the incorporation of effective behaviour change interventions into any equine welfare improvement strategy may help to safeguard the future of equestrianism.
MULTIFILE
The transition towards an economy of wellbeing is complex, systemic, dynamic and uncertain. Individuals and organizations struggle to connect with and embrace their changing context. They need to create a mindset for the emergence of a culture of economic well-being. This requires a paradigm shift in the way reality is constructed. This emergence begins with the mindset of each individual, starting bottom-up. A mindset of economic well-being is built using agency, freedom, and responsibility to understand personal values, the multi-identity self, the mental models, and the individual context. A culture is created by waving individual mindsets together and allowing shared values, and new stories for their joint context to emerge. It is from this place of connection with the self and the other, that individuals' intrinsic motivation to act is found to engage in the transitions towards an economy of well-being. This project explores this theoretical framework further. Businesses play a key role in the transition toward an economy of well-being; they are instrumental in generating multiple types of value and redefining growth. They are key in the creation of the resilient world needed to respond to the complex and uncertain of our era. Varta-Valorisatielab, De-Kleine-Aarde, and Het Groene Brein are frontrunner organizations that understand their impact and influence. They are making bold strategic choices to lead their organizations towards an economy of well-being. Unfortunately, they often experience resistance from stakeholders. To address this resistance, the consortium in the proposal seeks to answer the research question: How can individuals who connect with their multi-identity-self, (via personal values, mental models, and personal context) develop a mindset of well-being that enables them to better connect with their stakeholders (the other) and together address the transitional needs of their collective context for the emergence of a culture of the economy of wellbeing?
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Creating and testing the first Brand Segmentation Model in Augmented Reality using Microsoft Hololens. Sanoma together with SAMR launched an online brand segmentation tool based on large scale research, The brand model uses several brand values divided over three axes. However they cannot be displayed clearly in a 2D model. The space of BSR Quality Planner can be seen as a 3-dimensional meaningful space that is defined by the terms used to typify the brands. The third axis concerns a behaviour-based dimension: from ‘quirky behaviour’ to ‘standardadjusted behaviour’ (respectful, tolerant, solidarity). ‘Virtual/augmented reality’ does make it possible to clearly display (and experience) 3D. The Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences has created the BSR Quality Planner in Virtual Reality – as a hologram. It’s the world’s first segmentation model in AR. Breda University of Applied Sciences (professorship Digital Media Concepts) has deployed hologram technology in order to use and demonstrate the planning tool in 3D. The Microsoft HoloLens can be used to experience the model in 3D while the user still sees the actual surroundings (unlike VR, with AR the space in which the user is active remains visible). The HoloLens is wireless, so the user can easily walk around the hologram. The device is operated using finger gestures, eye movements or voice commands. On a computer screen, other people who are present can watch along with the user. Research showed the added value of the AR model.Partners:Sanoma MediaMarketResponse (SAMR)