In this paper, the performance gain obtained by combining parallel peri- odic real-time processes is elaborated. In certain single-core mono-processor configurations, for example, embedded control systems in robotics comprising many short processes, process context switches may consume a considerable amount of the available processing power. For this reason, it can be advantageous to combine processes, to reduce the number of context switches and thereby increase the performance of the application. As we consider robotic applications only, often consisting of processes with identical periods, release times and deadlines, we restrict these configurations to periodic real-time processes executing on a single-core mono-processor. By graph-theoretical concepts and means, we provide necessary and sufficient conditions so that the number of context switches can be reduced by combining synchronising processes.
DOCUMENT
In bepaalde single-core configuraties met één processor, b.v. embedded control systems zoals robotic applications die uit vele korte processen bestaan, kunnen de context switches van een proces een aanzienlijke hoeveelheid van de beschikbare processing power verbruiken. Het verminderen van het aantal context switches vermindert de executietijd en verhoogt daardoor de prestaties van de toepassing. Bovendien is de end-to-end executietijd van de processen langer dan strict noodzakelijk, b.v. omdat de processen moeten wachten op controllers die een taak uitvoeren. Door de regels voor synchrone communicatie via kanalen in de procesalgebraïsche specificatietaal Communicating Sequential Processes te versoepelen, kunnen we de end-to-end executietijd verkorten. In ons onderzoek definiëren we verschillende graafproducten, bewijzen we dat deze producten een prestatiewinst opleveren (onder bepaalde voorwaarden) en we werken de numerieke en combinatorische aspecten van deze graafproducten uit.
DOCUMENT
Recently, we have introduced two graph-decomposition theorems based on a new graph product, motivated by applications in the context of synchronising periodic real-time processes. This vertex-removing synchronised product (VRSP) is based on modifications of the well-known Cartesian product and is closely related to the synchronised product due to Wöhrle and Thomas. Here, we recall the definition of the VRSP and the two graph-decomposition theorems, we relax the requirements of these two graph-decomposition theorems and prove these two (relaxed) graph-decomposition theorems.
DOCUMENT