Background:An eHealth tool that coaches employees through the process of reflection has the potential to support employees with moderate levels of stress to increase their capacity for resilience. Most eHealth tools that include self-tracking summarize the collected data for the users. However, users need to gain a deeper understanding of the data and decide upon the next step to take through self-reflection.Objective:In this study, we aimed to examine the perceived effectiveness of the guidance offered by an automated e-Coach during employees’ self-reflection process in gaining insights into their situation and on their perceived stress and resilience capacities and the usefulness of the design elements of the e-Coach during this process.Methods:Of the 28 participants, 14 (50%) completed the 6-week BringBalance program that allowed participants to perform reflection via four phases: identification, strategy generation, experimentation, and evaluation. Data collection consisted of log data, ecological momentary assessment (EMA) questionnaires for reflection provided by the e-Coach, in-depth interviews, and a pre- and posttest survey (including the Brief Resilience Scale and the Perceived Stress Scale). The posttest survey also asked about the utility of the elements of the e-Coach for reflection. A mixed methods approach was followed.Results:Pre- and posttest scores on perceived stress and resilience were not much different among completers (no statistical test performed). The automated e-Coach did enable users to gain an understanding of factors that influenced their stress levels and capacity for resilience (identification phase) and to learn the principles of useful strategies to improve their capacity for resilience (strategy generation phase). Design elements of the e-Coach reduced the reflection process into smaller steps to re-evaluate situations and helped them to observe a trend (identification phase). However, users experienced difficulties integrating the chosen strategies into their daily life (experimentation phase). Moreover, the identified events related to stress and resilience were too specific through the guidance offered by the e-Coach (identification phase), and the events did not recur, which consequently left users unable to sufficiently practice (strategy generation phase), experiment (experimentation phase), and evaluate (evaluation phase) the techniques during meaningful events.Conclusions:Participants were able to perform self-reflection under the guidance of the automated e-Coach, which often led toward gaining new insights. To improve the reflection process, more guidance should be offered by the e-Coach that would aid employees to identify events that recur in daily life. Future research could study the effects of the suggested improvements on the quality of reflection via an automated e-Coach.
DOCUMENT
This article describes the relation between mental health and academic performance during the start of college and how AI-enhanced chatbot interventions could prevent both study problems and mental health problems.
DOCUMENT
Quantifying measures of physical loading has been an essential part of performance monitoring within elite able-bodied sport, facilitated through advancing innovative technology. In wheelchair court sports (WCS) the inter-individual variability of physical impairments in the athletes increases the necessity for accurate load and performance measurements, while at the same time standard load monitoring methods (e.g. heart-rate) often fail in this group and dedicated WCS performance measurement methods are scarce. The objective of this review was to provide practitioners and researchers with an overview and recommendations to underpin the selection of suitable technologies for a variety of load and performance monitoring purposes specific to WCS. This review explored the different technologies that have been used for load and performance monitoring in WCS. During structured field testing, magnetic switch based devices, optical encoders and laser systems have all been used to monitor linear aspects of performance. However, movement in WCS is multidirectional, hence accelerations, decelerations and rotational performance and their impact on physiological responses and determination of skill level, is also of interest. Subsequently both for structured field testing as well as match-play and training, inertial measurement units mounted on wheels and frame have emerged as an accurate and practical option for quantifying linear and non-linear movements. In conclusion, each method has its place in load and performance measurement, yet inertial sensors seem most versatile and accurate. However, to add context to load and performance metrics, position-based acquisition devices such as automated image-based processing or local positioning systems are required.
DOCUMENT