The aim of this study is to investigate Dutch citizens’ care attitudes by looking at care-giving norms and citizens’ welfare state orientation and to explore to what extent these attitudes can be explained by combinations of diversity characteristics. We combined two datasets (2016 and 2018, N = 5,293) containing citizens’ opinions regarding society and conducted multivariate linear and ordered probit regression analyses. An intersectional perspective was adopted to explore the influence of combinations of diversity characteristics. Results show that citizens’ care-giving norms are relatively strong, meaning they believe persons in need of care should receive help from their families or social networks. However, citizens consider the government responsible for care as well. Men, younger people, people in good health and people of non-Western origin have stronger care-giving norms than others, and younger people assign relatively more responsibility to the family than the government. Level of education and religiosity are also associated with care attitudes. Primary diversity dimensions are more related to care attitudes than secondary, circumstantial dimensions. Some of the secondary dimensions interact with primary dimensions. These insights offer policy makers, social workers and (allied) health professionals the opportunity to align with citizens’ care attitudes, as results show that people vary to a large extent in their care-giving norms and welfare state orientation.
Thirty to sixty per cent of older patients experience functional decline after hospitalisation, associated with an increase in dependence, readmission, nursing home placement and mortality. First step in prevention is the identification of patients at risk. The objective of this study is to develop and validate a prediction model to assess the risk of functional decline in older hospitalised patients.
Like many countries, the COVID-19 pandemic has forced Statistics Netherlands to make changes in its fieldwork strategy. Since mid-March 2020, there have been limited opportunities to conduct face-to-face interviews. Therefore, from September 2020, CAPI sampled people are offered the opportunity to respond by telephone. For this purpose, face-to-face interviewers are instructed to persuade the potential respondent at the doorway. When people refuse a face-to-face interview, interviewers ask for a telephone number and try to make an appointment to conduct the interview by telephone. The aim of our study was to investigate the effects of conducting the interview by telephone instead of face-to-face on important survey outcome variables. We were particularly interested in whether differences are due to selection effects or caused by mode-specific measurement errors. Because we did not have the time or capacity to set up a controlled experiment, we performed regression analyses to decompensate the differences between selection effects and mode-specific measurement errors. We used data of the Labour Force Survey (LFS) and the Housing Survey (WoON). Our analysis showed that there were differences in important target variables, for both LFS and WoON. These differences were, however, mainly caused by selection effects – which can be taken into account for during weighting – and were less likely to be caused by mode specific measurement errors. Although there are important limitations and caveats, these findings are supportive to further implement this field strategy.
Zijn data-analyse en bio-informatica de sleutel naar voorspellingen over de invloed van giftige stoffen op de gezondheid van mensen? Het project DART Pathfinder is een vervolgonderzoek naar een dierproefvrije testmethode. Met moderne ICT-technieken proberen we die voorspellingen te doen.Doel Het doel van dit project is om gegevens over giftige stoffen uit verschillende data bronnen samen te brengen. In het onderzoek gebruiken we technieken uit de bio-informatica. Zo willen we de eigenschappen van giftige stoffen beter in kaart brengen en (nadelige) effecten van soortgelijke stoffen kunnen voorspellen. Veel bedrijven maken producten of stoffen, die getest moeten worden of ze veilig zijn. Met dit project helpen we bedrijven om o.b.v. bestaande gegevens een betere keuze te maken welke testen ze hiervoor het beste kunnen gebruiken. Resultaten Kennis over computer modellen die voorspellingen doen, zoals machine learning, regression tree-based models; Nieuwe algoritmen (instructies om berekeningen uit te voeren) Inzicht in nieuwe biologische mechanismen obv data science Nieuwe statische methoden om data te analysen en voorspellingen te doen. Looptijd 01 februari 2018 - 01 februari 2022 Aanpak Met de gegevens uit het onderzoek maken we een computermodel dat voorspelt of giftige stoffen invloed hebben op de voortplanting en ontwikkeling van mensen. Die voorspelling gebeurt via machine learning, algoritmen en statistische methoden. Voor dit model wordt informatie uit publieke databases over fysische en chemische eigenschappen van mogelijk gevaarlijke stoffen samengevoegd met de gegevens over de invloed van deze stoffen op levende organismen. Net als in het eerste onderzoek (PreDART) werken we met rondwormen (C.elegans) en embryo's van zebravissen, met als doel geen proeven meer met ratten en konijnen te hoeven doen.