Bespreking van het academisch proefschrift van Anne M. Eskes, Universiteit van Amsterdam.
LINK
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
DOCUMENT
Since 2012 the dutch metropolitan area (the metropole region of amsterdam, the city of amsterdam, rotterdam, the hague, utrecht ) cooperate in finding the best way to stimulate electric mobility through the implementation of a public charging infrastructure. with more than 5600 charge points and 1.6 million charge sessions in the last two years this is one of the most extensively used public charging infrastructure available worldwide. in this paper a benchmark study is carried out to identify different charge patterns between these 5 leading areas with an extensive public charging infrastructure to establish whether and how charge behaviour (e.g. charged volume, capacity utilization, unique users) differs between cities. based on the results first explanations for possible differences in charge patterns between cities will be provided. the study aims to contribute to a better understanding of the utilization of public charging infrastructure in a metropolitan area existing of four city centres and the amsterdam metropolitan area and to provide input for policy makers to prepare a public charging infrastructure ready for the projected growth of electric mobility in the next five years.
DOCUMENT
The utilization of drones in various industries, such as agriculture, infrastructure inspection, and surveillance, has significantly increased in recent years. However, navigating low-altitude environments poses a challenge due to potential collisions with “unseen” obstacles like power lines and poles, leading to safety concerns and equipment damage. Traditional obstacle avoidance systems often struggle with detecting thin and transparent obstacles, making them ill-suited for scenarios involving power lines, which are essential yet difficult to perceive visually. Together with partners that are active in logistics and safety and security domains, this project proposal aims at conducting feasibility study on advanced obstacle detection and avoidance system for low-flying drones. To that end, the main research question is, “How can AI-enabled, robust and module invisible obstacle avoidance technology can be developed for low-flying drones? During this feasibility study, cutting-edge sensor technologies, such as LiDAR, radar, camera and advanced machine learning algorithms will be investigated to what extent they can be used be to accurately detect “Not easily seen” obstacles in real-time. The successful conclusion of this project will lead to a bigger project that aims to contribute to the advancement of drone safety and operational capabilities in low-altitude environments, opening new possibilities for applications in industries where low-flying drones and obstacle avoidance are critical.
To decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Until now, research has focused on the mechanical properties of mycelium products. The aim has been improving their mechanical strength, to achieve wider application in the construction sector. Alongside this, to introduce mycelium composites to a wider market, the aesthetic experience of the public also needs to be considered. In the context of this proposal, it is argued that users of biobased products can shift their attitudes towards their surroundings by adjusting to the visual aesthetics within their environment or products they surround themselves with (Hekkert, 1997). This can be further attributed to colours which can be experienced as warm or cold, aggressive or inviting, leading to experiences that may include pleasure or displeasure indicating the future success of the bio based product. Mycelium composites can be used as building materials, but also as interior design materials, therefore visible to its user. It is to determine the appropriate methodologies to confer colour to mycelium composites that the companies Impershield and Dorable came together to form the consortium for the present project. The investigated ways are: 1. Through the preliminary colouring of fibres and their use as substrate for mycelium growth 2. The surface treatment of the final product. The Centre of Expertise BioBased Economy (CoEBBE) and the Centre of Applied Research for Art and Design (CARADT) will be guiding the research through their experience with mycelium composites. This project will lay the basis to enhance visual appearance of mycelium composites, with the utilization of natural pigments, natural paints and coatings.
Het doel van dit interdisciplinaire SIA KIEM project Fluïde Eigenschap in de Creatieve Industrie is te onderzoeken of en hoe gedeelde vormen van eigenaarschap in de creatieve industrie kunnen bijdragen aan het creëren van een democratischer en duurzamer economie, waarin ook het MKB kan participeren in digitale innovatie. Het project geeft een overzicht van beschikbare vormen van (gedeeld) eigenaarschap, hun werking en hoe deze creatieve professionals kunnen ondersteunen bij de transitie naar de platformeconomie. Dit wordt toegepast op een concrete case, dat van een digitale breimachine. Naast het leveren van een goede praktijk, moet het project leiden tot een groter internationaal onderzoeksvoorstel over Fluid Ownership in the Creative Industry, dat dieper ingaat op de beschikbare eigendomsoplossingen en hoe deze waarde zullen creëren voor de creatieve professional.