The economic recession has hit especially hard the residential building sector in the EU region, e.g., the number of the housing completions has decreased -49% and the total residential output has been squeezed down by -24% between 2007 and 2014 (Euroconstruct, 2015). In turn, the aim of our paper is to suggest a set of radical, novel programmes for developing the national residential building sectors within EU member countries up to 2025. We have applied the framework of strategic niche management (SNM) to the diagnoses of the current portfolios of the innovation, R&D programs in our two member country contexts. In the case of the Northern Finland, the prime example is Hiukkavaara, the largest district to be built in the City of Oulu. Homes will be constructed for 20,000 new residents. Hiukkavaara is a model for climate- conscious design in the northern hemisphere. Energy and materials are conserved, nature is valued and human beings adapt to their environment. One sub-programme involves Future Buildings and Renewable Energy Project. In the case of the Netherlands, the prime example is Energiesprong (Energy Leap), i.e., the innovation programme commissioned by the Dutch Ministry of the Interior. The aim is to make buildings energy-neutral and boost large-scale initiatives. The sub-programmes are targeting homes owned by housing associations, privately owned homes, office buildings, shops and care institutions. This programme is about ensuring new supply by encouraging companies to package a variety of technical sub-solutions, full services and financing options as well as about asking clients to put out tenders and ask for quotes in novel ways, with the government making changes to the rules and the regulations. Experiences on which the Dutch case in this paper focuses are sub-programmes for residential buildings, which include de Stroomversnelling, LALOG and Ons Huis Verdient Het. Based on the emerging Finnish and Dutch evidence, we are suggesting key elements to be incorporated into future national residential programmes within EU member countries on: (1) radical direction with balanced stakeholder groups, trustworthy advocates, contextual goal-setting and barriers management, (2) radical networking with entrepreneurial roles and causal links, novel expertise, transparent choices and digital platforms and (3) radical learning processes to arrive at better informed markets on user preferences, co-innovating, new rules and regulations, higher performance/price ratios, higher quality, new roles and responsibilities assignments.
DOCUMENT
Abstract: Technological innovation in the healthcare sector is increasing, but integration of information technology (IT) in the care process is difficult. Healthcare workers are important agents in this IT integration. The purpose of this study is to explore factors that feed motivation to use IT. Self-determination theory (SDT) is applied to study how motivational factors impact effective IT use among frontline caregivers in residential care settings. As the team is very important to these caregivers, the team is our unit of analysis. In an embedded single case study design, interviews were conducted with all nine members of a team effectively using IT. All three basic psychological needs from SDT - autonomy, competence and relatedness - were found to have impact on effective IT use, though autonomy was primarily experienced at team level. Conversely, the effective use of an IT collaboration tool influences relatedness.
MULTIFILE
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry.
DOCUMENT
The objective of CW4N is to identify opportunities for wood reuse through the use of advanced digital production technologies1, and develop related implementation strategies for public organisations, in particular housing corporations and municipalities. Strategies include concrete proposals on how to: a) collect and process wood waste from residential buildings; b) add value to reclaimed wood by means of digital production; c) increase tenant involvement and acceptance for waste wood collection and circular reuse; d) create impactful applications for a circular economy. The research is carried out in four work packages. The first identifies the nature of residential wood waste (volume, type, application) from past case projects of housing corporations Ymere and Rochdale. Their upcoming renovation plans are evaluated, to identify resources and hotspots for future implementations. The second workpackage explores what applications can be conceived, given the available wood and digital production tools at the AUAS Robot Lab. In the third workpackage case studies are carried out for actual projects of the housing corporations. Physical prototypes are used as conversation pieces to involve tenants and increase their acceptance for circular applications. In the fourth workpackage all findings are combined in a set of implementation strategies. High-quality data-collection is crucial for the project, since it will determine the nature of the materials for designing and manufacturing applications. In this proposal, additional resources are added to the project to take care of data-collection. Due to covid-19, project managers at Ymere and Rochdale must focus on day-to-day work to get ongoing and planned building projects done, reducing their time for data collection from previous projects. In addition, because of teleworking, non-digital data such as drawings and reports are not easily accessible. To enhance data-collection, student-assistants will be added to the project to survey ongoing renovation projects in the field.