Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: −1.3%).
OBJECTIVE: Protein supplementation increases gains in lean body mass following prolonged resistance-type exercise training in frail older adults. We assessed whether the greater increase in lean body mass can be attributed to muscle fiber type specific hypertrophy with concomitant changes in satellite cell (SC) content.DESIGN: A total of 34 frail elderly individuals (77 ± 1 years, n = 12 male adults) participated in this randomized, double-blind, placebo-controlled trial with 2 arms in parallel.INTERVENTION: Participants performed 24 weeks of progressive resistance-type exercise training (2 sessions per week) during which they were supplemented twice-daily with milk protein (2 × 15 g) or a placebo.METHODS: Muscle biopsies were taken at baseline, and after 12 and 24 weeks of intervention, to determine type I and type II muscle fiber specific cross-sectional area (CSA), SC content, and myocellular characteristics.RESULTS: In the placebo group, a trend for a 20% ± 11% increase in muscle fiber CSA was observed in type II fibers only (P = .051), with no increase in type I muscle fiber CSA. In the protein group, type I and II muscle fiber CSA increased by 23% ± 7% and 34% ± 10% following 6 months of training, respectively (P < .01). Myonuclear domain size increased over time in both groups and fiber types (P < .001), with no significant differences between groups (P > .05). No changes in myonuclear content and SC contents were observed over time in either group (both P > .05). Regression analysis showed that changes in myonuclear content and domain size are predictive of muscle fiber hypertrophy.CONCLUSIONS: Protein supplementation augments muscle fiber hypertrophy following prolonged resistance-type exercise training in frail older people, without changes in myonuclear and SC content.
BACKGROUND: Combining increased dietary protein intake and resistance exercise training for elderly people is a promising strategy to prevent or counteract the loss of muscle mass and decrease the risk of disabilities. Using findings from controlled interventions in a real-life setting requires adaptations to the intervention and working procedures of healthcare professionals (HCPs). The aim of this study is to adapt an efficacious intervention for elderly people to a real-life setting (phase one) and test the feasibility and potential impact of this prototype intervention in practice in a pilot study (phase two).METHODS: The Intervention Mapping approach was used to guide the adaptation in phase one. Qualitative data were collected from the original researchers, target group, and HCPs, and information was used to decide whether and how specified intervention elements needed to be adapted. In phase two, a one-group pre-test post-test pilot study was conducted (n = 25 community-dwelling elderly), to elicit further improvements to the prototype intervention. The evaluation included participant questionnaires and measurements at baseline (T0) and follow-up (T1), registration forms, interviews, and focus group discussions (T1). Qualitative data for both phases were analysed using an inductive approach. Outcome measures included physical functioning, strength, body composition, and dietary intake. Change in outcomes was assessed using Wilcoxon signed-rank tests.RESULTS: The most important adaptations to the original intervention were the design of HCP training and extending the original protein supplementation with a broader nutrition programme aimed at increasing protein intake, facilitated by a dietician. Although the prototype intervention was appreciated by participants and professionals, and perceived applicable for implementation, the pilot study process evaluation resulted in further adaptations, mostly concerning recruitment, training session guidance, and the nutrition programme. Pilot study outcome measures showed significant improvements in muscle strength and functioning, but no change in lean body mass.CONCLUSION: The combined nutrition and exercise intervention was successfully adapted to the real-life setting and seems to have included the most important effective intervention elements. After adaptation of the intervention using insights from the pilot study, a larger, controlled trial should be conducted to assess cost-effectiveness.TRIAL REGISTRATION: Trial registration number: ClinicalTrials.gov NL51834.081.14 (April 22, 2015).