We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.
LINK
A rail-guided robotic system is currently being designed for the inspection of ballast water tanks in ships. This robotic system will manipulate sensors toward the interior walls of the tank. In this paper, the influence of rail compliance on the end-effector position error due to ship movement is investigated. An analytical model of the six degrees-of-freedom (DOF) rail stiffness is presented and implemented in a reduced-order analytical frequency response model. This model describes the transfer function between ship acceleration and end-effector position as a function of rail geometry and material properties. Moreover, the influence of the robot compliance is investigated, resulting in design parameters for the robot. The models and calculations are evaluated and compared with a multibody model and prove to be accurate. The analytic models indicate whether or not a proposed robotic system is feasible and if so, optimize rail dimensions, material and robot design. A use-case scenario has been developed which shows that the proposed design will be unlikely to meet the requirements of this robot system design; therefore an alternative design strategy is recommended.
DOCUMENT
Instead of using a passive AC power grid for low power applications, this paper describes a smart plug for DC networks that is capable of providing the correct power to a device (up to 100W) and that allows for communication between different plugs and monitoring of energy consumption across the DC network using the Ethernet protocol in conjunction with a signal modulator to adapt the signals to the DC network. The ability to monitor consumption on a device-per-device basis allows for closer monitoring of in-house energy use and provides an easily scalable platform to monitor consumption at a macro level. In order to make this paper attractive for the consumer market and easily integrable with existing consumer devices, a generally compatible solution is needed. To meet these demands and to take advantage of the trend of charging consumer devices through USB, we opted for the recently adapted USB Power Delivery standard. This standard allows devices to communicate with the plug and demand a specific voltage and current needed for the device to operate. The purpose of this paper is to give the reader insight in the development of a proof of concept of the smart DC/DC power plug. 10.1109/DUE.2014.6827761
DOCUMENT
De missie van het lectoraat Fotonica is om een bijdrage te leveren aan een gezonde wereld en een duurzame economie door het toepasbaar maken van fotonicatechnologie in de praktijk. Ook draagt het lectoraat bij aan het opleiden van professionals op het gebied van fotonica, wat een voorwaarde is om de ambities van deze groeisector waar te kunnen maken. Het fotonica-onderzoek richt zich op de toepassingsgebieden Hightech Industrie, Agri & Food, Energie & Klimaat, Gezondheid en Mobiliteit. Digitale technologie speelt in de ontwikkeling van deze gebieden een grote rol, waarbij fotonica op grote schaal wordt ingezet voor het verkrijgen van digitale data. Sleutelwoorden voor het onderzoek zijn spectroscopie, metrologie en afbeelding. Het toepassen van optische sensoren, zoals spectrometers of glasvezel-gebaseerde sensoren, speelt hierbij een centrale rol. De lijfspreuk van de natuurkundige Heike Kamerlingh Onnes ‘door meten tot weten’, aangevuld met ‘door weten tot handelen’, is dan ook een leidraad voor het lectoraat.
DOCUMENT
Developmental Transformations (DvT), a practice involving interactive, improvisational play in pairs or groups, has gained international appeal as a therapeutic intervention for different populations in a variety of health, care and recreational contexts. However, a rigorous review of the benefits of DvT has not been conducted. The purpose of this study was to review extant literature for the observed benefits of DvT, identify gaps in the literature and make recommendations concerning future research including identifying possible areas for outcome measurement for preliminary studies. The authors, who each completed training in this approach, conducted a scoping review of English-language, published, peer-reviewed and grey DvT literature through 2021. From an initial 745 records retrieved through databases and a manual search, 51 publications met criteria, which, when analysed using in-vivo and pattern coding, resulted in a total of seventeen categories of observed benefits ascribed to DvT. These included six general categories – relational, emotional, social, cognitive, behavioural and physical benefits – and eleven complex categories of benefits to participants across the lifespan. In addition to benefits for participants, benefits of DvT were also observed and reported for facilitators, therapists, teachers and supervisors engaged in this practice. This review revealed inconsistencies regarding the reporting of practitioner training, frequency, format, population, intended goals, assessment measures and outcomes. Future studies with increased experimental rigor, standardized outcome measures and consistent reporting are recommended.
DOCUMENT
This paper evaluates a design procedure which is able to scale one-dimensional quadratic-residue diffusers, with integrated Helmholtz resonators. These acoustic structures can be tuned to room modes while fitting within a specified volume. An algorithmic solver is used to control geometric parameters in order to achieve a target frequency. The effect of the diffuser on a room is estimated using Pachyderm. Values obtained with simplified models, that make use of analytically derived coefficients, are compared with those obtained by simulating the full geometry. The predictive power of the simplified modeling made it preferable over simulating the full geometry in comparable scenarios. CFD simulations and measurements taken from a 1:1 scale prototype, are used to evaluate the applicability of lumped mass models to predict resonance frequency and absorption of slit Helmholtz resonators. Although the obtained results remain inconclusive, they indicate a higher inertial attached length for semi-infinite slit resonators, than typically found in literature. If these results can be validated, then the procedure should provide reliable designs.
DOCUMENT
In the past decade, the fast and transient coupling and uncoupling of functionally related brain regions into networks has received much attention in cognitive neuroscience. Empirical tools to study network coupling include functional magnetic resonance imaging (fMRI)-based functional and/or effective connectivity, and electroencephalography (EEG)/magnetoencephalography-based measures of neuronal synchronization. Here we use simultaneously recorded EEG and fMRI to assess whether fMRI-based connectivity and frequency-specific EEG power are related. Using data collected during resting state, we studied whether posterior EEG alpha power fluctuations are correlated with connectivity within the visual network and between the visual cortex and the rest of the brain. The results show that when alpha power increases, BOLD connectivity between the primary visual cortex and occipital brain regions decreases and that the negative relation of the visual cortex with the anterior/medial thalamus decreases and the ventral–medial prefrontal cortex is reduced in strength. These effects were specific for the alpha band, and not observed in other frequency bands. The decreased connectivity within the visual system may indicate an enhanced functional inhibition during a higher alpha activity. This higher inhibition level also attenuates long-range intrinsic functional antagonism between the visual cortex and the other thalamic and cortical regions. Together, these results illustrate that power fluctuations in posterior alpha oscillations result in local and long-range neural connectivity changes.
LINK
With a market demand for low cost, easy to produce, flexible and portable applications in healthcare, energy, biomedical or electronics markets, large research programs are initiated to develop new technologies to provide this demand with new innovative ideas. One of these fast developing technologies is organic printed electronics. As the term printed electronics implies, functional materials are printed via, e.g. inkjet, flexo or gravure printing techniques, on to a substrate material. Applications are, among others, organic light emitting diodes (OLED), sensors and Lab-on-a-chip devices. For all these applications, in some way, the interaction of fluids with the substrate is of great importance. The most used substrate materials for these low-cost devices are (coated) paper or plastic. Plastic substrates have a relatively low surface energy which frequently leads to poor wetting and/or poor adhesion of the fluids on the substrates during printing and/ or post-processing. Plasma technology has had a long history in treating materials in order to improve wetting or promote adhesion. The µPlasma patterning tool described in this thesis combines a digital inkjet printing platform with an atmospheric dielectric barrier discharge plasma tool. Thus enabling selective and local plasma treatment, at atmospheric pressure, of substrates without the use of any masking materials. In this thesis, we show that dependent on the gas composition the substrate surface can either be functionalized, thus increasing its surface energy, or material can be deposited on the surface, lowering its surface energy. Through XPS and ATR-FTIR analysis of the treated (polymer) substrate surfaces, chemical modification of the surface structure was confirmed. The chemical modification and wetting properties of the treated substrates remained present for at least one month after storage. Localized changes in wettability through µPlasma patterning were obtained with a resolution of 300µm. Next to the control of wettability of an ink on a substrate in printed electronics is the interaction of ink droplets with themselves of importance. In printing applications, coalescence of droplets is standard practice as consecutive droplets are printed onto, or close to each other. Understanding the behaviour of these droplets upon coalescence is therefore important, especially when the ink droplets are of different composition and/or volume. For droplets of equal volume, it was found that dye transport across the coalescence bridge could be fully described by diffusion only. This is as expected, as due to the droplet symmetry on either side of the bridge, the convective flows towards the bridge are of equal size but opposite in direction. For droplets of unequal volume, the symmetry across the bridge is no longer present. Experimental analysis of these merging droplets show that in the early stages of coalescence a convective flow from the small to large droplet is present. Also, a smaller convective flow of shorter duration from the large into the small droplet was identified. The origin of this flow might be due to the presence of vortices along the interface of the bridge, due to the strong transverse flow to open the bridge. To conclude, three potential applications were showcased. In the first application we used µPlasma patterning to create hydrophilic patterns on hydrophobic dodecyl-trichlorosilane (DTS) covered glass. Capillaries for a Lab-on-a-chip device were successfully created by placing two µPlasma patterned glass slides on top of each other separated by scotch tape. In the second application we showcased the production of a RFID tag via inkjet printing. Functional RFID-tags on paper were created via inkjet printing of silver nanoparticle ink connected to an integrated circuit. The optimal operating frequency of the produced tags is in the range of 860-865 MHz, making them usable for the European market, although the small working range of 1 m needs further improvement. Lastly, we showed the production of a chemresistor based gas sensor. In house synthesised polyemeraldine salt (PANi) was coated by hand on top of inkjet printed silver electrodes. The sensor proved to be equally sensitive to ethanol and water vapour, reducing its selectivity in detecting changes in gas composition.
DOCUMENT
As Vehicle-to-Everything (V2X) communication technologies gain prominence, ensuring human safety from radiofrequency (RF) electromagnetic fields (EMF) becomes paramount. This study critically examines human RF exposure in the context of ITS-5.9 GHz V2X connectivity, employing a combination of numerical dosimetry simulations and targeted experimental measurements. The focus extends across Road-Side Units (RSUs), On-Board Units (OBUs), and, notably, the advanced vehicular technologies within a Tesla Model S, which includes Bluetooth, Long Term Evolution (LTE) modules, and millimeter-wave (mmWave) radar systems. Key findings indicate that RF exposure levels for RSUs and OBUs, as well as from Tesla’s integrated technologies, consistently remain below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure guidelines by a significant margin. Specifically, the maximum exposure level around RSUs was observed to be 10 times lower than ICNIRP reference level, and Tesla’s mmWave radar exposure did not exceed 0.29 W/m2, well below the threshold of 10 W/m2 set for the general public. This comprehensive analysis not only corroborates the effectiveness of numerical dosimetry in accurately predicting RF exposure but also underscores the compliance of current V2X communication technologies with exposure guidelines, thereby facilitating the protective advancement of intelligent transportation systems against potential health risks.
MULTIFILE
Purpose: This case study is presented to inform the reader of potential speech, language, cognitive, and emotional characteristics in preadolescent cluttering. Method: This case study describes a 10-year-old boy who started to clutter during preadolescence. The case illustrates that, in some adolescents, cluttering can co-occur with temporary stuttering-like behavior. In this case, signs of disturbances in speech-language production associated with behavioral impulsiveness as a young child were noted. Speech, language, cognitive, and emotional results of the case are reported in detail. Results: The changes in fluency development are reported and discussed within the context of changes in the adolescent brain as well as adolescent cognitive and emotional development. While being unaware of their speech condition before adolescence, during preadolescence, the changes in brain organization lead to an increase in rate and a decrease in speech control. Given that the client had limited understanding of what was occurring, they were at risk of developing negative communication attitudes. Speech-language therapists are strongly advised to monitor children with cluttering signals in the early years of their adolescence.
DOCUMENT