This communication aims to provide a framework on how to integrate the concept of Circular Economy (CE) when addressing real-life urban challenges such as resource scarcity, greenhouse gas emissions, pollution, waste, and high consumerism (Williams, 2019), through delivery of courses to students of various educational backgrounds. As part of the mission of Amsterdam University of Applied Sciences (AUAS) to be at the forefront of promoting sustainability through education and research, the Faculties of Technology and of Business and Economics joined forces to launch a new minor namely Circular Amsterdam: Mission Zero Waste. This minor focuses on the challenges and opportunities towards the circular transition in Amsterdam as well as in other European cities, by applying system level of thinking and real-life practical cases.CE model is a shift from the traditional linear “take, make, and dispose” way of doing business, to promoting circularity of the waste product through the 3R principles (reduce, reuse, recycle), which is nowadays extended to using 9R principles (0-Refuse, 1-Rethink, 2-Reduce, 3-Reuse, 4-Repair, 5-Refurbish, 6-Remanufacture, 7-Repurpose, 8-Recycle, and 9-Recover) (Potting et al., 2017). Transitioning to CE model needs intervention and multidisciplinary approach at different levels, hence requiring systems level of thinking. This means that technical, organizational, economic, behavioral, and regulatory aspects should be taken into account when designing business models, policies, or framework on CE. In the case of the minor, a system change including the challenges and opportunities needed in the cities, will be approached from different perspectives. In order to do this, the minor requires collaboration on a real-life problem using multiple backgrounds of students that include technical, economic, creative and social domains, as well as various stakeholders such as businesses, policy makers, and experts in circular economy.This minor will provide in-depth knowledge and skills based on its two tracks. The first track is called Circular Design & Technology. It focuses on the role of technology in CE, technological design, material use, production, use of circular resources in production, and impact analysis. The second track is called Circular Governance & Management. This track focuses on viable business case development, circular supply chain management, finance, regulations, entrepreneurship, and human capital. The focus of this communication will be the second track.Multidisciplinary teams each consisting of approximately four students will work on different projects. Examples of real-world, practical cases related to Circular Governance & Management track include: (1) development of business models addressing resource shortages and waste in the cities, (2) influencing consumer mindset when it comes to recycling and use of circular materials and products, (3) development of financially viable circular businesses, with due consideration of different instruments such as traditional bank loans, green/social bonds and loans, crowdfunding, or impact investing, and (4) tracking and reporting their sustainability performance with the voluntary use of sustainability metrics and reporting standards in order to better manage their risk and attract capital. These projects are linked to research expertises in AUAS. The course activities include (guest) lectures, workshops, co-creation sessions, excursions, presentations and peer reviews. The learning goals in the Circular Governance & Management track include being able to:1. Understand the foundations of CE and theory of change;2. Apply systems thinking to show how different interventions, such as consumer products, logistics models, business models or policy designs, can affect the transition from the existing linear to a CE model;3. Design an intervention, such as a product, logistic concept, business model, communication strategy or policy design supporting the CE, using students‘ backgrounds, ambitions and interests;4. Understand the financial and regulatory framework affecting the management and governance of (financially viable) circular businesses, including government incentives;5. Evaluate the economic, environmental and social impacts of developed intervention design on the city and its environment;6. Provide justification of students‘ design according to sustainability performance indicators;7. Collaborate with stakeholders in a multidisciplinary team; and8. Present, defend and communicate the results in English.
Life on the Brink is an unusual volume in that it allows non-‐academic, activist voices as well as politicians, environmental studies scholars, and social scientists to participate in the argument that concerns us all, the argument about the future of our planet and of humanity. The common thread running through the essays of two dozen nature writers and activists hailing from a range of disciplines and offering varied perspectives is their shared concern about population growth. All contributors see population growth as a major force behind our most serious ecological problems, including global climate change, habitat loss and species extinctions, air and water pollution, and food and water scarcity. Despite the differences in perspectives, all contributors argue that ending population growth worldwide is a moral imperative that deserves renewed commitment. https://www.linkedin.com/in/helenkopnina/
This article explores the establishment of new commons initiatives from an integrated design perspective. Such a deeper understanding of the initial phase of becoming a commons -i.e. becommoning- and its design is crucial as members embark on a laborious, time-consuming and uncertain process in which they need to make critical design choices for their future commons. The design perspective is brought forward by the collective creation through which group values are explicated, the communal resource and its governance take shape and conditions are forged for the commons to emerge. So, the study presents the ‘becommoning’ framework as a first exploration for such a designerly approach to identify the steps and activities communities need to make at the very begin to start unfolding their initiative. The framework is applied in a case study, namely, for exploring the design of housing commons and related genres like cohousing, residential communities that are recognized as microlaboratories offering general insights for pursuing alternative societal models.
MULTIFILE
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
Since the 1970s, Caribbean reefs have transitioned from coral-dominated to algal-dominated ecosystems. The prevalence of algae reduces coral recruitment, rendering the reefs unable to recover from additional disturbances and jeopardizing crucial ecosystem services, including coastal protection, fisheries, and tourism. One of the main factors to the proliferation of algae is the scarcity of grazers, which is a result of overfishing and disease outbreaks. While fishing supports livelihoods, enhances local food security, and is an integral part of the Caribbean communities' culture, it remains a significant threat to coral reefs. Consequently, the Nature and Environmental Policy Plan (NEPP) 2020-2030, outlining conservation and restoration priorities in the Caribbean Netherlands, underscores the necessity of an integrated approach to tackle the complex challenges of coral reef restoration and fisheries development. The Saba government, and nature management organizations of Bonaire, St. Eustatius, and Saba are implementing the NEPP. Together with University of Applied Sciences Van Hall Larenstein, Wageningen University and WWF, they aim to identify novel species of native invertebrate grazers with the dual purpose of reef restoration and fisheries diversification. The Caribbean king crab (Maguimithrax spinosissimus), the West Indian sea egg (Tripneustes ventricosus), and the West Indian top shell (Cittarium pica) have been identified as potential candidates. Despite their preference to graze on macroalgae, their current densities are inadequate. Population enhancement of these species holds promise for reducing algae, promoting biodiversity, and simultaneously supporting small-scale fisheries. However, there is limited knowledge regarding the ecological effects and socio-economic potential of these grazers. The ReefGrazers project aims to assess the current densities of these herbivores around the BES islands, analyze their impacts on the reef, and evaluate their retention post-restocking. Socio-economic research will quantify current small-scale fishing practices, while market analysis will help assess the potential for the development of these novel resources as sustainable fisheries.