Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE
Using the reversed phase high performance liquid chromatography with diode-array and massspectrometric (in ESI mode) detection, a composition of Catharanthus roseum petals was established. After the acid hydrolysis, all five anthocyanidins were found to be different comparing to the ordinary anthocyanidins from Vitis vinifera fruits. The anthocyanins were elucidated to be 7-O-methyl derivatives of delphinidin, cyanidin, petunidin, peonidin and malvidin by the analysis of retention in RP HPLC, mass- and UV-visible spectra.The anthocyanins were characterized with UV-visible spectra, having the same fixtures as the set of nonmethylated (in position 7) anthocyanin with hypsochromic (4 nm) of spectral maxima. The absorption bands for 7-methylcyanidin and 7-methylpeonidin aglycons and derivatives were indistinguishable while for the set of 7-methydelphinidin, 7-methypetunidin and 7-methylmalvidine (hirsutidin) a consecutive shift of absorption maximaby approximately 1 – 1.5 nm was found. The same was true for non-methylates at position 7 derivatives. The analysis of retention of anthocyanins of the flowers including the comparison with the retention of Mangifera indica skin anthocyanins, mass- and UV-visible spectra indicated that a minor set of anthocyanins included two sets of derivatives. The minor compounds were found to be 3-galactosides for samples under investigation, while the set of the major anthocyanins was represented by 3-rhamnosylgalactosides. Indeed, though through mass-spectra it was not possible to differentiate 3-rhamnosylgalatosides and 3-(p-coumaroylgalactosides) because of m/z coincidence, the retention difference between the two found anthocyanins sets as well as UV-visible spectra excluded the latter type of derivatives.
The invention relates to the use of modified starch obtainable by treating amylose containing starch in aqueous medium with an enzyme from the group of the α-1,4-α-1,4-glucosyl transferases (EC 2.4.1.25) or an enzyme the activity of which corresponds to that of enzymes from the group just mentioned, as an agent for forming a thermoreversible gel. The invention also relates to products in the form of a thermoreversible gel having as gel-forming substance a modified starch as defined. The invention further relates to the use of a modified starch as defined in the form of an aqueous solution.
LINK