Young pediatric patients who undergo venipuncture or capillary blood sampling often experience high levels of pain and anxiety. This often results in distressed young patients and their parents, increased treatment times, and a higher workload for healthcare professionals. Social robots are a new and promising tool to mitigate children’s pain and anxiety. This study aims to purposefully design and test a social robot for mitigating stress and anxiety during blood draw of children. We first programmed a social robot based on the requirements expressed by experienced healthcare professionals during focus group sessions. Next, we designed a randomized controlled experiment in which the social robot was applied as a distraction method to measure its capacity to mitigate pain and anxiety in children during blood draw in a children’s hospital setting. Children who interacted with the robot showed significantly lower levels of anxiety before actual blood collection, compared to children who received regular medical treatment. Children in the middle classes of primary school (aged 6–9) seemed especially sensitive to the robot’s ability to mitigate pain and anxiety before blood draw. Children’s parents overall expressed strong positive attitudes toward the use and effectiveness of the social robot for mitigating pain and anxiety. The results of this study demonstrate that social robots can be considered a new and effective tool for lowering children’s anxiety prior to the distressing medical procedure of blood collection.
LINK
This report is the final report for the FPGA accelerated PID controller, part of the Distributed Control Systems project. This project runs within the Lectoraat Robotics and High Tech Mechatronics of Fontys Hogeschool Engineering Eindhoven. The Lectoraat has the goal to develop applicable knowledge to support education and industry. This knowledge is acquired with projects run in conjunction with the industry. The report will go into detail for the software designed for this project, not the hardware design. This report is intended for follow up students working on the Distributed Control Systems project. Within this report the assumption is made that the reader is at least familiar with the terms EtherCAT, FPGA, Linux and PID controllers. However for each part a small basic introduction is included. For readers looking for the accomplishments in this project, the results are in chapter six. Following are short descriptions of the chapters in this report. The first chapter will give a short introduction to the project. It talks about why the project was conceived, where the project was done and what the expected end result is. The second chapter, the problem definition, talks about how the project has been defined, what is included and what is not and how the customer expects the final product to function and look like. The third chapter details the methodology used during this project. All the research preformed for this project will be described in the forth chapter. This chapter goes into the research into the Xilinx Zynq 7000 chip, Beckhoff's EtherCAT system, how the Serial Peripheral Interface works and how a PID controller functions. Following in chapter five the design is expanded upon. First the toolchain for building for the Zynq chip is explained. This is followed by and explanation of the different software parts that have been designed. Finally chapters six and seven provide the results and the conclusions and recommendations for this project.
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.