The Design-to-Robotic-Production and -Assembly (D2RP&A) process developed at Delft University of Technology (DUT) has been scaled up to building size by prototyping of-site a 3.30 m high fragment of a larger spaceframe structure The fragment consists of wooden linear elements connected to a polymer node printed at 3D Robot Printing and panels robotically milled at Amsterdam University of Applied Science (AUAS). It has been evaluated for suitability for assembly on-site without temporary support while relying on human-robot collaboration. The constructed architectural hybrid structure is proof of concept for an on- and off-site D2RP&A approach that is envisioned to be implemented using a range of robots able to possibly address all phases of construction in the future.
DOCUMENT
Within our research on robotic gas detection, we have focused on making a prototype based on Boston Dynamics SPOT, because it takes a lot of difficulties out of prototyping. For instance, it has its own obstacle avoidance algorithm, good drivers are available for ROS2, and SPOT is meant for outdoor navigation. Being a legged robot means that it can easily traverse curbs, shrubberies, unstable soil and even stairs. For this document, we are going to use the insights that we used when looking for a solution for SPOT.
MULTIFILE
This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four perspectives were distinguished with increasing sophistication; psychological, technological, function, and controlled system. Using Lego Mindstorms NXT robots, as an example of a Direct Manipulation Environment, we developed and conducted a lesson plan to investigate pupils' reasoning patterns. There is ample evidence that pupils have little difficulty in understanding that robots are man-made technological and functional artifacts. Pupils' understanding of the controlled system concept, more specifically the complex sense-reason-act loop that is characteristic of robotics, can be fostered by means of problem solving tasks. The results are discussed with respect to pupils' developing technological literacy and the possibilities for teaching and learning in primary education.
LINK
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy.