A literature review conducted as part of a research project named “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems” revealed several challenges regarding the safety metrics used in aviation. One of the conclusions was that there is limited empirical evidence about the relationship between Safety Management System (SMS) processes and safety outcomes. In order to explore such a relationship, respective data from 7 European airlines was analyzed to explore whether there is a monotonic relation between safety outcome metrics and SMS processes, operational activity and demographic data widely used by the industry. Few, diverse, and occasionally contradictory associations were found, indicating that (1) there is a limited value of linear thinking followed by the industry, i.e., “the more you do with an SMS the higher the safety performance”, (2) the diversity in SMS implementation across companies renders the sole use of output metrics not sufficient for assessing the impact of SMS processes on safety levels, and (3) only flight hours seem as a valid denominator in safety performance indicators. At the next phase of the research project, we are going to explore what alternative metrics can reflect SMS/safety processes and safety performance in a more valid manner
DOCUMENT
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
DOCUMENT
A literature review, which was conducted during the research project “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems”, identified several problems and challenges regarding safety performance metrics in aviation. The findings from this review were used to create a framework for interviewing 13 companies in order to explore how safety performance is measured in the industry. The results from the surveys showed a wide variety of approaches for assessing the level of safety. The companies encounter and/or recognise problematic areas in practice when implementing their safety management. The findings from the literature review are partially confirmed and it seems that the current ways of measuring safety performance are not as straight forward as it might be assumed. Further research is recommended to explore alternative methods for measuring aviation safety performance.
DOCUMENT
Objectives: Current study explores the potential of the safety rating scale in order to determine the surplus value for evidence based practise. This study wants to contribute to this knowledge gape by exploring the safety scale by analysing the change between two safety ratings. First, the absolute change in safety is investigated. Secondly the study explores to what extent family background characteristics and case management characteristics determine the extent of change in perceived safety. Materials and Methods: The study analysed 105 Dutch child protection cases who had registration files with filled out LIRIK checklist, Action Plan and additional baseline safety and end safety measure as perceived by case managers. Results: On average perceived safety increased from an insufficient level to sufficient level. Significant regression coefficients with larger changes for primary school children (6 - 12 years) and lower changes for children within the ‘socio economic problems cluster’. The results reveal significant vulnerability for preschool children and families attending the socio-economic cluster due to limited improvement. Conclusion: According to this study the safety measure can be of value to outcome monitoring. The safety measure is a practical measure that reflects on the current state of safety within a family according to professionals and can be used on several occasions during case management. In addition, on aggregated level pre and post measures can be analysed for quality management purpose. Further exploration of this measure is needed. Publishers article: https://www.ecronicon.com/ecpe/ECPE-10-00873.php
DOCUMENT
In the frame of an on-going 4-years research project, the Aviation Academy Safety Management Systems (AVAC-SMS) metric for the self-assessment of aviation Safety Management Systems (SMS) was designed based on the Safety Management Manual of the International Civil Aviation Organization and in cooperation with knowledge experts and aviation companies. The particularmetric evaluates three areas, namely (1) the degree of institutionalisation of SMS (design and implementation of processes), (2) the extent of managers’ capability to deliver the SMS processes, and (3) the employees’ perceived effectiveness of the SMS-related deliverables. The metric concludes with a score per area and per SMS component/element assessed, and it is scalable to the size and complexity of each organisation. Results of a survey at 18 aviation companies did not show statistically significant differences in their SMS scores across all three assessment areas but revealed a distance between the area of Institutionalization and the areas of Capability and Effectiveness. Also, differences were detected regarding the scores per SMS component and element within and across companies and assessment areas. The various assessment options offered for the AVAC-SMS metric accommodates the resources each SME and large company can invest in the application of the metric. Even the lowest level of resolution of the SMS metric can trigger companies to investigate further their weaker areas and foster their SMS-related activities. Therefore, the AVAC-SMS metric is deemed useful to organisations that want to self-assess their SMS and proceed to comparisons amongst various functions and levels and/or over time.
DOCUMENT
This essay explores the notion of resilience by providing a theoretical context and subsequently linking it to the management of safety and security. The distinct worlds of international security, industrial safety and public security have distinct risks as well as distinct ‘core purposes and integrities’ as understood by resilience scholars. In dealing with risks one could argue there are three broad approaches: cost-benefit analysis, precaution and resilience. In order to distinguish the more recent approach of resilience, the idea of adaptation will be contrasted to mitigation. First, a general outline is provided of what resilience implies as a way to survive and thrive in the face of adversity. After that, a translation of resilience for the management of safety and security is described. LinkedIn: https://www.linkedin.com/in/juul-gooren-phd-cpp-a1180622/
DOCUMENT
Although reengineering is strategically advantageous fororganisations in order to keep functional and sustainable, safety must remain apriority and respective efforts need to be maintained. This paper suggeststhe combination of soft system methodology (SSM) and Pareto analysison the scope of safety management performance evaluation, and presents theresults of a survey, which was conducted in order to assess the effectiveness,efficacy and ethicality of the individual components of an organisation’s safetyprogram. The research employed quantitative and qualitative data and ensureda broad representation of functional managers and safety professionals, whocollectively hold the responsibility for planning, implementing and monitoringsafety practices. The results showed that SSM can support the assessment ofsafety management performance by revealing weaknesses of safety initiatives,and Pareto analysis can underwrite the prioritisation of the remedies required.The specific methodology might be adapted by any organisation that requires adeep evaluation of its safety management performance, seeks to uncover themechanisms that affect such performance, and, under limited resources, needsto focus on the most influential deficiencies.
DOCUMENT
When following a systems-based approach in child protection, caution is neededto stay focused on the safety of children. However, practice-oriented knowledgeon how to succeed is lacking. To explore whether professionals were able tokeep focus on child safety, research was carried out into the experiences of casemanagers applying an innovative, systems-based methodology in child protectionand youth parole services in the Netherlands, named: Intensive Family CaseManagement (IFCM). A representative sample of family meetings at the YouthProtection Amsterdam Area agency was monitored. Additionally, quality assurance instruments, case notes, and Family Plans filled out by case managers and their supervisors were examined on the use of children’s safety and needs tools. The results show that family meetings were organised in half of the cases. In only 25% of these face-to-face contacts all the family members were present. In nearly all families, the tools for child safety (94%), children’s needs (81%), and safety and risk assessment (90%) were used. Although the implementation of the IFCM methodology was still ongoing at the time of data collection, the analyses showed that case managers used the tools for almost all families. In contrast to this they had difficulties in adequately applying the systems-based approach. The results suggest that ongoing monitoring and support in daily practice is essential for working in accordance with a systems-based approach.
DOCUMENT
This paper introduces the AVAC-SMS maturity metric and its accompanying tool which were developed in the frame of a research project with the aim to suggest new safety metrics, especially for Small-Medium Enterprises (SMEs). The metric is based on the ICAO Safety Management Manual, it was designed by applying the Systems-Theoretic Process Analysis (STPA) technique and it was reviewed by companies, authorities and field experts. It can be used to assess the institutionalisation, capability and effectiveness of an aviation SMS by following a systematic approach that employs the use of information from the safety department, managers and employees of an organisation. The AVAC-SMS maturity metric is uniform for the aviation sector, customisable to the size and complexity of the organisation, and results in numerical scores that can be used to monitor SMS maturity levels over time or perform benchmarking among companies.
DOCUMENT
Risk management is considered as the core process of an effective safety management system for identifying hazards and assessing risks. However, recent fatal hull loss accidents appear to have resulted from a combination of factors, none of which can alone cause an accident or even a serious incident. Therefore, traditional safety risk assessment processes, risk matrices, hazard logs and conventional risk management methodologies that mainly address individual risks, in some cases remained less effective in preventing major accidents that resulted from cumulative risks. Consequently, air operators have the need not only to proactively identify the ‘initial’ and the ‘residual’ risk of a hazard, but also to recognize the ‘current’ or ‘actual’ risk state of their system and to take the necessary mitigation actions for preventing an accident or a serious incident that may result from a combination of factors. The aim of this paper is to present and explain the concept of Dynamic Risk Management Dashboards (DRMDs), a tool which is a combined, real-time basis, a cross-departmental effort for managing risks resulting from a combination of factors. DRMD could concurrently examine and visualize the actual risk state of an aerodrome, an aircraft, an aircrew or an air traffic route based on a set of pre-defined Risk Acceptance Criteria that have been developed and tailored by each operator. The DRMDs have been implemented and evaluated by the safety department of a large military aviation organization as a proactive safety tool that complements the existing risk management process. Anecdotal results after a six-month trial period showed that DRMD assist decision makers in identifying the cumulative risks of particular missions and effectively in responding to unacceptable risks before authorizing or dispatching a particular flight.
DOCUMENT