Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this paper presents: (1) a set of safety requirements generated from the application of the Systems Theoretic Process Analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, and drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights.
DOCUMENT
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
DOCUMENT
The continuous increase of accident and incident reports has indicated the potential of drones to threaten public safety. The published regulatory framework for small drones is not visibly based on a comprehensive hazard analysis. Also, a variety in the constraints imposed by different regulatory frameworks across the globe might impede market growth and render small-drone operations even more complicated since light drones might be easily transferred and operated in various regions with diverse restrictions. In our study we applied the Systems-Theoretic Process Analysis (STPA) method to small-drone operations and we generated a first set of Safety Requirements (SR) for the authority, manufacturer, end-user and automation levels. Under the scope of this paper, we reviewed 56 drone regulations published by different authorities, and performed (1) a gap analysis against the 57 SRs derived by STPA for the authority level, and (2) Intra-Class Correlations in order to examine the extent of their harmonization. The results suggest that the regulations studied satisfy 5.3% to 66.7% of the SRs, and they are moderately similar. The harmonization is even lower when considering the range of values of various SRs addressed by the authorities. The findings from the drones’ case show that regulators might not similarly and completely address hazards introduced by new technology; such a condition might affect safety and impede the distribution and use of products in the international market. A timely and harmonized standardization based on a systematic hazard analysis seems crucial for tackling the challenges stemmed from technological advancements, especially the ones available to the public.
DOCUMENT
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
The consistent demand for improving products working in a real-time environment is increasing, given the rise in system complexity and urge to constantly optimize the system. One such problem faced by the component supplier is to ensure their product viability under various conditions. Suppliers are at times dependent on the client’s hardware to perform full system level testing and verify own product behaviour under real circumstances. This slows down the development cycle due to dependency on client’s hardware, complexity and safety risks involved with real hardware. Moreover, in the expanding market serving multiple clients with different requirements can be challenging. This is also one of the challenges faced by HyMove, who are the manufacturer of Hydrogen fuel cells module (https://www.hymove.nl/). To match this expectation, it starts with understanding the component behaviour. Hardware in the loop (HIL) is a technique used in development and testing of the real-time systems across various engineering domain. It is a virtual simulation testing method, where a virtual simulation environment, that mimics real-world scenarios, around the physical hardware component is created, allowing for a detailed evaluation of the system’s behaviour. These methods play a vital role in assessing the functionality, robustness and reliability of systems before their deployment. Testing in a controlled environment helps understand system’s behaviour, identify potential issues, reduce risk, refine controls and accelerate the development cycle. The goal is to incorporate the fuel cell system in HIL environment to understand it’s potential in various real-time scenarios for hybrid drivelines and suggest secondary power source sizing, to consolidate appropriate hybridization ratio, along with optimizing the driveline controls. As this is a concept with wider application, this proposal is seen as the starting point for more follow-up research. To this end, a student project is already carried out on steering column as HIL
Aanleiding: Automatisering kan leiden tot beter gebruik van materialen en afval reduceren. Dit brengt verbeteringen met zich mee voor 'people, planet and profit' (PPP) - mensen, het milieu en de winst. Een specifieke vorm van automatisering, de ontwikkeling van zelfrijdende auto's en vrachtauto's, gaat snel. Maar om zelfrijdende voertuigen beschikbaar te maken is er nog veel onderzoek en ontwikkeling nodig op verschillende gebieden. Er zijn nog veel vragen te beantwoorden op het gebied van onder andere truckontwerp, betrouwbare software, aansprakelijkheid, trajectplanning en logistiek. Doelstelling Het doel van het Intralog-project is om voor de maatschappij en de private sector een significante bijdrage te leveren aan de mogelijkheden van zelfrijdende voertuigen in de commerciële transportsector. Het Intralog-project onderzoekt de toegevoegde waarde voor PPP van 'automated guided trucks' (AGT's) aan logistieke operaties bij distributiecentra en interterminal/intermodal traffic hubs. Dit gebeurt in twee stappen: 1) het identificeren van het potentieel met betrekking tot de vraag vanuit de logistieke omgeving; 2. het ontwerpen, realiseren, testen en valideren van mogelijke strategieën voor het implementeren van AGT's in een logistiek scenario. Beoogde resultaten Het concrete resultaat van het project bestaat uit onderzoekstools en hardware- en softwaremodellen voor Intralog. Deze bieden een goede mogelijkheid om de opgedane kennis te verspreiden. De projectdeelnemers zullen bijdragen aan workshops, tentoonstellingen en in Nederland georganiseerde symposia. De onderzoeksresultaten verspreiden ze op conferenties en door middel van publicaties in technische vakbladen. De uiteindelijke Intralog-resultaten worden gepresenteerd op een afsluitend congres. De resultaten zullen worden samengevat in een boekje.