Collapses of school or dormitory buildings experienced in recent earthquakes raise the issue of safety as a major challenge for decision makers. A school building is ‘just another structure’ technically speaking, however, the consequences of a collapse in an earthquake could lead to social reactions in the complex aftermath of a seismic tremor more than any other type of structure may possibly cause. In this paper a school building that collapsed during 2011 Tabanli, Van Earthquake in eastern Turkey, is analysed in order to identify the possible reasons that led to collapse. Apart from the inherent deficiencies of RC buildings built in Turkey in the 80's and 90's, its structural design exhibits a strikingly high asymmetry. In the analyses conducted, much attention has been given to the direction of the earthquake load and its coincidence with the bi-axial structural response parameters. The failure of the structure to comply with the 1975 Code, in vigor at the time of construction, has also been evaluated with respect to the structure’s collapse. Among the parameters that controlled the collapse, the high plan asymmetry and the coincidence of the vulnerable directions with the dominant shaking direction were critical, as well as the underestimation of the seismic hazard and the lateral design force level, specified by the then Turkish Earthquake Code.
LINK
Primary school design is balancing between end-user needs and societal interests, and between traditional and innovative approaches. In current approaches, an unbalance affects end-users’ performances and obstructs innovative school-building design. The institutional system of design should not only be more aware of adjusting the quality design indicators to end-users, but they should actually do it in combination with the increasing need for more innovation in school-building designs. Present guidelines emphasize objective rational societal and traditional interests but underestimate the subjective essences of individual end-user needs and the abilities of intelligent school buildings to meet important requirements for present and future learning environments. Based on universal human needs and dynamic mechanisms relationships, this article addresses a number of reasons that cause these mismatches. We present a theoretical analysis to establish Needs Centred Guidelines for primary school design as a methodological tool to improve the balance between the societal and end-users’ needs, and to give more insight into underlying patterns in design processes. The guidelines are based on a variety of end-user psychological, physiological and bio-physical needs. This article explains how this analytic approach contributes to the attention for end-user physical learning environment needs and to innovate school design.
There is an ongoing social debate concerning Dutch primary school design related to persistent physical environmental problems such as poor indoor quality and inflexible spatial elements. Increasing complexity and building construction process failures, as well as inexperienced school principals, also seem to be important impact factors. This analysis employed a multi-level model which reflects the interrelationship between needs, interests and views, which are in turn responsible for physiological, psychological and biophysical problems in the school-building design process. It shows that antagonistic interests seem to impede rational innovative pathways which could be used to enhance synergetic solutions. These interests impact on the process by affecting the objective decision-making process adversely, making the problems faced unnecessarily complex due to competing subjective desires. The new approach proposed here increases awareness by mirroring actors’ behaviour and their most important needs, possibly leading to a decrease in school-building design problems. By means of introducing a positive psychological approach and viewing these profound human needs as a social fractal, it is possible to create a new paradigm which might solve the school-design crisis. As a lever for changing the current processes, new tangible school-building design parameters also might become available. The aim of this study was to analyse the current problem patterns and assess the possibility of producing more synergetic solution patterns. On this basis, we developed a needs-centred guideline for primary schools.
LINK
The main aim of KiNESIS is to create a Knowledge Alliance among academia, NGOs, communities, local authorities, businesses to develop a program of multidisciplinary activities in shrinking areas with the aim of promoting and fostering ideas, projects, workforce, productivity and attractiveness. The problems affecting peripheral territories in rural or mountain areas of the interior regions, compared to small, medium or large population centres and large European capitals, are related to complex but clear phenomena: the emigration of young generations, abandonment and loneliness of elderly people, the loss of jobs, the deterioration of buildings and land, the closing of schools and related services, the disappearance of traditions and customs, the contraction of local governments, which in absence of adequate solutions can only generate worse conditions, leading to the abandonment of areas rich in history, culture and traditions. It is important that these communities - spread all over Europe - are not abandoned since they are rich in cultural traditions, which need to be preserved with a view to new developments, intended as "intelligent" rebirth and recovery.The focus of KiNESIS is to converge the interest of different stakeholders by recalling various skills around abandoned villages to make them "smart" and "attractive".Keeping in mind the triangular objectives of cooperation and innovation of research, higher education and business of the Knowledge Alliance action, the project aims are: i) revitalising depopulated areas by stimulating entrepreneurship and entrepreneurial skills; ii) creating local living laboratories, shared at European level, in which the exchange of knowledge, best practices, experiences can help promote social inclusion and entrepreneurial development;iii) experimenting new, innovative and multidisciplinary approaches in teaching and learning; iv) facilitating the exchange, flow and co-creation of knowledge at a local and global level.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.
Gebouwautomatiseringssystemen voor de utiliteitssector zoals kantoren, scholen, ziekenhuizen vereisen steeds meer functionaliteit om tegemoet te komen aan nieuwe eisen en wensen van gebouwbeheer en eindgebruikers op gebied van o.a. comfort, bezetting, onderhoud interieur, afvalbeheer, energie en dergelijke. De recente technologische ontwikkelingen maken het mogelijk om de gebouwbeheersystemen in te zetten voor innovatieve toepassingen. Maar door lastige toegankelijkheid van bestaande systemen kunnen gebouwbeheerders onvoldoende gebruik maken van deze vernieuwingen. Fabrikanten van gebouwbeheersystemen (GBS) hebben hun producten (vaak op basis van BACnet) veelal zo ingericht dat onderlinge competitie en vrije marktwerking voor verschillende vernieuwende elementen op gebied van digitalisering van beheer- en onderhoudstaken moeilijk is. Recente ontwikkelingen maken het mogelijk binnen de field layer van BACnet dat nieuwe devices aan het bestaande gebouwbeheersysteem gekoppeld kunnen worden en reeds bestaande devices kunnen worden aangestuurd. Nieuwe open source data-mining applicaties (bijv. van Rapid Miner, IBM, Oracle) bieden daarbij de mogelijkheid nieuwe gegevens te genereren om het beheer van gebouwen verder te optimaliseren. Deze ontwikkelingen maken de weg vrij voor verdere toepassingen en innovaties en bieden kansen voor betrokken bedrijven in deze sector. Echter, gebouwbeheerders en installateurs zijn nog onwetend of onzeker van de mogelijkheden m.b.t. prestaties, robuustheid, integreerbaarheid en ondersteuning terwijl de behoefte tot nieuwe diensten groeit. In dit KIEM project wordt met een consortium van een sensor/ICT-ontwikkelbedrijf (Octo), een totaal installateur (E+W) (Lomans Amersfoort), een gebouwbeheerder (HU bedrijfsvoering) en drie onderzoekers uit verschillende lectoraten van de hogeschool Utrecht verkend welke open source datamining tools en innovatieve sensorsystemen van belang kunnen zijn voor de huidige gebouwautomatisering. Er wordt verkend waar de knelpunten zijn en waar de kansen liggen tot integratie. Daarbij kan gedacht worden aan diensten op basis van gebouwbeheer zoals gegarandeerd comfortabel binnenklimaat, efficiënte bezettingsgraad van ruimtes, vernieuwend afvalbeheer en optimale energiehuishouding. Maar ook andere potentiële diensten zullen verder worden onderzocht samen met ketenpartners en ICT/sensorsysteem-innovators. Deze verkenningen worden vertaald naar een programma voor vervolgonderzoek.