The evolving landscape of science communication highlights a shift from traditional dissemination to participatory engagement. This study explores Dutch citizens’ perspectives on science communication, focusing on science capital, public engagement, and communication goals. Using a mixed-methods approach, it combines survey data (n = 376) with focus group (n = 66) insights. Findings show increasing public interest in participating in science, though barriers like knowledge gaps persist. Trust-building, engaging adolescents, and integrating science into society were identified as key goals. These insights support the development of the Netherlands’ National Centre of Expertise on Science and Society and provide guidance for inclusive, effective science communication practices.
LINK
main spatial policy approaches to securing DHC through new developments in Belgium, France, Ireland, the Netherlands and the United Kingdom
LINK
Health in All Policies (HiAP), a horizontal strategy connecting all relevant policy sectors, is internationally recognised as a core policy approach to improve the population’s health. For HiAP to be effective, it is recommended that both a Whole of Government and a Whole of Society approach is applied. In the Netherlands, HiAP has been in place since the late eighties of last century. Initially the focus has been on the Whole of Government approach; more recently this is amended by a national Whole of Society program.This thesis addresses the possible role of Citizen Science as a possible contribution to the knowledge base underpinning HiAP and a Whole of Society approach. Citizen Science, as the active contribution of citizens in research, links up with asset-based approachesand community participation that are key elements in modern health promotion.Key questions of the thesis were:“What are possible methods to engage citizens in developing the knowledge base for Health in All Policies (HiAP), and what are challenges and benefits of such engagement?”This thesis draws, firstly, on a theoretical exploration in which the application of Citizen Science in public health is explored. Secondly, two case studies on the application of Citizen Science in the Netherlands were performed. Thirdly, two scoping reviews wereperformed. Finally, one case study was carried out focusing on perceptions of health professionals in a Dutch city district.
LINK
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.