Background: With the increased attention on implementing inquiry activities in primary science classrooms, a growing interest has emerged in assessing students’ science skills. Research has been concerned with the limitations and advantages of different test formats to assess students’ science skills. Purpose: This study explores the construction of different instruments for measuring science skills by categorizing items systematically on three subskill levels (science-specific, thinking, metacognition,) and different activities of the empirical cycle.Sample: The study included 128 5th and 6th grade students from seven primary schools in the Netherlands.Design and method: Seven measures were used: a paper-and-pencil test, three performance assessments, two metacognitive self-report tests and a test used as an indication of general cognitive ability.Results: Reliabilities of all tests indicate sufficient internal consistency. Positive correlations between the paper-and-pencil test and performance assessments reinforce that the different tests measure a common core of similar skills thus providing evidence for convergent validity. Results also show that students’ ability in performing scientific inquiry is significantly related to general cognitive ability. No relations are found between the measure of general metacognitive ability and the paper-and-pencil test or the three performance assessments. By contrast the metacognitive self-report test constructed to obtain information about application of metacognitive abilities in performing scientific inquiry, shows significant - although small - correlations with two performance assessments. Further explorations reveal sufficient scale reliabilities on subskill and empirical step level.Conclusions: The present study shows that science skills can be measured reliably by categorizing items on subskill and step level. Additional diagnostic information can be obtained by examining mean scores on both subskill and step level. Such measures are not only suitable for assessing students’ mastery of science skills but can also provide teachers diagnostic information to adapt their instructions and foster the learning process of their students.
DOCUMENT
In this study, a data feedback program to improve teachers’ science and technology (S&T) teaching skills was designed and tested. The aim was to understand whether and how the four design principles underlying this program stimulated the intended teacher support. We examined how teachers in different phases of their career applied and experienced the employed design principles’ key aspects. Eight in-service teachers and eight pre-service teachers attended the data feedback program and kept a logbook in the meantime. Group interviews were held afterwards. Findings show that applying the four employed design principles’ key aspects did support and stimulate in- and pre-service teachers in carrying out data feedback for improving their S&T teaching. However, some key aspects were not applied and/or experienced as intended by all attending teachers. The findings provide possible implications for the development and implementation of professional development programs to support in - and pre-service teachers’ S&T teaching using data feedback.
DOCUMENT
The research in this dissertation aims to investigate the acquisition of students’ science skills in grades 5 and 6 of primary education in the Netherlands. In most primary science classes, science skills are mainly taught by way of conducting investigations. However, prior research indicates that explicit instruction and separate skills training may be more effective. In this dissertation, four studies are discussed. In the first study, an instructional framework was developed based on a categorization of science skills into thinking skills, science-specific skills and metacognitive skills. This instructional framework was used to develop lessons using systematic instruction aimed at the development of these different skills. The second study describes the development and psychometric quality of the measurement instruments in order to examine the acquisition and transfer of science skills. Two paper-and-pencil tests, three performance assessments and two questionnaires were used for this purpose. In a third study, the effects of two experimental conditions were evaluated, following an experimental pretest-posttest design: a condition with explicit instruction and a condition in which all aspects of explicit instruction were absent. Students in both conditions received an 8-week intervention and were compared to students in a baseline condition who followed their regular science curriculum. The fourth study addresses the use of performance assessments as a diagnostic tool for science teachers. In general, the results indicate that the measurement instruments can be used to reliably measure science skills. Findings also show that explicit instruction facilitates acquisition and transfer of science skills.
MULTIFILE
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
In recent years, ArtEZ has worked on a broadly supported strategic research agenda on the themes New Ecologies of Matter (ecological challenges), Social Equity (social-societal issues), (Un)Learning Practices (educational innovations) and (Non)CybernEtic Fabric (technological developments). Building on these strategic themes, the ArtEZ Research Collective as developed an international research strategy to become a valuable partner in the relevant Horizon Europe (HEU) areas of Environment, Industry and Social science and humanities. With its specific knowledge position and approach from arts and creativity, ArtEZ is convinced that it can play a distinctive role in European consortia to tackle various challenges in these areas, in particular from the perspective and research topics of the professorships Fashion and Tactical Design. To achieve its ambitions and goals in its targeted research topics, ArtEZ is convinced that a combination of international connections and local applications is key for successful impact. Building upon existing relations and extending the international research position requires extra efforts, e.g., by developing a strong international framework of state-of-the-art research results, impacts and ambitions. Therefore ArtEZ needs to (further) build on both its international network and its supportive infrastructure. With this proposal ArtEZ is presenting its goals and efforts to work on its international recognition as a valuable research partner, and to broaden its international network in cutting-edge research and other stakeholders. With regards to its supporting infrastructure, ArtEZ has the ambition to expand the impact of the Subsidy Desk to become a professional partner to the professorships. This approach requires a further professionalization and extension of both the Subsidy Desk organization and its services, and developing and complementing skills, expertise and competences to comply to the European requirements.
Circular Economy is a novel disruptive paradigm redefining sustainability in the hospitality industry and addressing the environmental challenges set by this fast-growing impactful industry. To address these challenges, the creation of further knowledge on circular economy and its applications in the hospitality sector is fundamental, together with providing hoteliers and restaurateurs with proper skills and knowhow to tackle such challenges. Drawing on a on going pilot project on Circular Economy in Hotels in Amsterdam, the Friesland hospitality sector and the Professorship of Sustainability in Hospitality and Tourism at NHL Stenden University of Applied Sciences have set out to develop an innovative learning experimental environment in which Friesland hoteliers and restaurateurs can develop further knowledge and identify - together with students, researchers, and experts – possible key actions and strategies to implement regenerative circular processes of material up-cycling. To which extent this learning community of the Northern Netherlands contributes to develop wider knowledge on circular economy in hospitality and to identify, implement, and test innovative regenerative circular actions will be evaluated.