The overall objective of project OC/EFSA/AMU/2018/01 was to support EFSA to develop in-house capacity to collect, appraise and synthesize evidence coming from literature sources in the context of food and feed scientific assessment. This objective had to be reached by offering 3 different types of training courses to EFSA staff (including Trainees) and Experts (of Panels, Working Groups and Member States). This report summarizes these trainings and their evaluation. Between 15 October 2018 and 24 November 2020, 9 trainings were delivered by a team of trainers from SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation, www.syrcle.nl) and partners. A total number of 160 people participated in these trainings (an average of 18 per training), some of whom participated in more than one training (day). The individual trainings were evaluated using an online evaluation form, which consisted of general questions (e.g. about the training room or course material) and specific questions about the various parts of the training courses. The participants had the option of adding qualitative comments. Moreover, a so-called second level evaluation was used to assess the extent to which the trainings improved the capacity of participants to use the techniques explained in the courses in the context of EFSA assessments. With an average score of 8.23 (out of 10), the trainings were evaluated very positively. Major revisions of the content were only necessary for two of the courses and only after the first editions. Overall, the participants assessed their knowledge and practical skills to be higher after the training compared to before. Moreover, two of the online editions of the courses received an EFSA Golden Globe for the most successful EFSA scientific courses delivered in 2020. Based on the experiences with this series of trainings, recommendations are made for future EFSA trainings in evidence synthesis.
DOCUMENT
Background: With the increased attention on implementing inquiry activities in primary science classrooms, a growing interest has emerged in assessing students’ science skills. Research has been concerned with the limitations and advantages of different test formats to assess students’ science skills. Purpose: This study explores the construction of different instruments for measuring science skills by categorizing items systematically on three subskill levels (science-specific, thinking, metacognition,) and different activities of the empirical cycle.Sample: The study included 128 5th and 6th grade students from seven primary schools in the Netherlands.Design and method: Seven measures were used: a paper-and-pencil test, three performance assessments, two metacognitive self-report tests and a test used as an indication of general cognitive ability.Results: Reliabilities of all tests indicate sufficient internal consistency. Positive correlations between the paper-and-pencil test and performance assessments reinforce that the different tests measure a common core of similar skills thus providing evidence for convergent validity. Results also show that students’ ability in performing scientific inquiry is significantly related to general cognitive ability. No relations are found between the measure of general metacognitive ability and the paper-and-pencil test or the three performance assessments. By contrast the metacognitive self-report test constructed to obtain information about application of metacognitive abilities in performing scientific inquiry, shows significant - although small - correlations with two performance assessments. Further explorations reveal sufficient scale reliabilities on subskill and empirical step level.Conclusions: The present study shows that science skills can be measured reliably by categorizing items on subskill and step level. Additional diagnostic information can be obtained by examining mean scores on both subskill and step level. Such measures are not only suitable for assessing students’ mastery of science skills but can also provide teachers diagnostic information to adapt their instructions and foster the learning process of their students.
DOCUMENT
A goal of science education is for students to develop scientific literacy. Scientific literacy involves the acquisition of factual scientific knowledge and the ability to assess the credibility of scientific assertation. Furthermore, students should be able to include ethical considerations. Realising this goal is complicated because it requires the development of argumentation skills, content knowledge, and an understanding of Nature of Science. Teachers struggle to apply effective strategies in the classroom. Few studies have shed light on usable, effective strategies. Therefore, the research goal is to identify features that encourage students to explore socio-scientific issues. To stimulate the development of scientific literary and support teachers, a web-based educational instrument was designed. In this study, the effects and influences of its features in the context of socio-scientific issues are investigated. The instrument provides a sequence of concept cartoons alternated with an interactive diagram. The instrument is deployed in 14 classrooms in both primary and secondary schools. In this paper, we present the educational instrument and report on its practical implementation and its constituent features. The results indicate that students show active involvement during their interaction with the instrument and reveal both the merits and challenges regarding the various features.
DOCUMENT
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Client: Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), with funding from the ministry of Education, Culture and Science (OCW)Funder: RAAK (Regional Attention and Action for Knowledge circulation)This research is co-funded by the Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), under the RAAK scheme.Project SASTDes aimed to resolve key issues in the sustainability assessment process of tourism destinations, with the objective to reduce the costs of assessments both in time and money, and to use the results of assessments for destination branding and marketing. The project’s core research question was: ‘How can sustainability assessments effectively and efficiently contribute to the sustainable development of tourism destinations and tourism products?’ All 7 work packages of this project were ultimately geared towards the construction of the SASTDes tool, an application enabling all elements of a destination sustainability assessment, with which DMOs can integrate sustainability into their strategic and operational management. All the project’s accomplishments are described in the Project Overview report that can be downloaded on this page. See under Research Output for individual reports.The consortium was led by BUas’ Centre for Sustainability, Tourism and Transport (CSTT). Knowledge partners were BUas’ associate professorships Sustainable Business Models (SBM) and Leisure and Tourism Experiences, Wageningen Environmental Research (WENR), part of Wageningen University & Research (WUR), and the associate professorship Data Science & ICT of Avans University of Applied Sciences. The municipalities of Breda, Goeree-Overflakkee and Schouwen-Duiveland, as well as Visit Zuid-Limburg, joined as destination partners. Tourism industry partners and NGO’s were Green Destinations, Follow, TUI Benelux, SeaGoingGreen, Fair Sayari, ECEAT, Treinreiswinkel, and bookdifferent.com.