Differentiates between clinical reasoning for diagnosis, etiology, prognosis, and for interventions. Includes basic knowledge about clinical reasoning and more in-depth knowledge, illustrated with videos. Helps to understand and to critical appraise the common research designs in healthcare scientific literature.
DOCUMENT
Introduction: Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning. Methods: A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors. Results: Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient’s problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated. Conclusion: All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.
DOCUMENT
When teaching grammar, one of the biggest challenges teachers face is how to make their students achieve conceptual understanding. Some scholars have argued that metaconcepts from theoretical linguistics should be used to pedagogically and conceptually enrich traditional L1 grammar teaching, generating more opportunities for conceptual understanding. However, no empirical evidence exists to support this theoretical position. The current study is the first to explore the role of linguistic metaconcepts in the grammatical reasoning of university students of Dutch Language and Literature. Its goal was to gain a better understanding of the characteristics of students’ grammatical conceptual knowledge and reasoning and to investigate whether students’ reasoning benefits from an intervention that related linguistic metaconcepts to concepts from traditional grammar. Results indicate, among other things, that using explicit linguistic metaconcepts and explicit concepts from traditional grammar is a powerful contributor to the quality of students’ grammatical reasoning. Moreover, the intervention significantly improved students’ use of linguistic metaconcepts.
DOCUMENT
“Teaching is both an art and a science” (Harrison & Coll, 2008 p.1). Good teaching excites students and cultivates their curiosity to learn more than they are asked. But what if students’ blank faces tell you that the teaching did not land, what can you do? Using an analogy or metaphor to explain the principle helps students visualize and comprehend the knowledge of difficult, abstract concepts by making it familiar. The National Academy of Engineers issued a report in 2008 emphasizing the need for design engineers to develop 21st century skills, such as ingenuity and creativity, and to create innovative products and markets. However, designers have a hard time ignoring evident constraints on their concepts during their design process. This is especially difficult for novice designers when attempting to use analogical reasoning (Osborn, 1963; Hey et al. 2008). Hey et al. explains how the multitude of design considerations is even more difficult for novice as compared to expert designers who are more able to focus on the important features of a problem. Kolodner (1997) iterates how novice designers have difficulty sifting through the mass of information they encounter. They need help with the transfer of knowledge that analogical reasoning requires. When students can clearly extract and articulate what they have learned, this helps them to internalize this. Biomimicry education teaches the clear extraction and articulation while learning to decipher and transfer function analogies from biology to design. This transfer can also improve reasoning when solving problems (Wu and Weng, 2013), reacting to the challenge in a more ‘out-of-the-box’ manner (Yang et al. 2015). However, not being able to fully understand this “conceptual leap between biology and design” in an accurate manner, is sited as a key obstacle of this field (Rowland, 2017; Rovalo and McCardle 2019, p. 1). Therefore, didactics on how to teach this analogical leap to overcome the hurdles is essential. There is insufficient research on the effectivity of biomimicry education in design to help establish ‘best practices’. This thesis offers advice to fill this pedagogical gap to find out how to overcome the obstacle of analogical reasoning for novice designers, while practicing biomimicry. The contribution to science is a not earlier tested methodology that leads to a clearer understanding of the translation of biological strategies and mechanisms found in scientific research. This translation from biology to design in visual and textual manner, is called the Abstracted Design Principle (ADP) and is introduced and explained in detail in chapters 4, 5 and 6 of this thesis. Together with the proposed instructions, we sketch the net-gain of positive mind-set for novice designers on their path to design for a sustainable future.
DOCUMENT
https://doi.org/10.1080/09500693.2019.1594442
MULTIFILE
Thinking back and forth between observing physical phenomena and developing scientific ideas, also known as hands-on and minds-on learning, is essential for the development of scientific reasoning in primary science education. In the Netherlands, inquiry-based learning is advocated as the preferred teaching method. However, most teachers lack time and sufficient pedagogical content knowledge to adequately provide the teaching required for this. To address this problem, we designed and evaluated science and technology lessons, consisting of hands-on experiments combined with interactive diagrams, aimed at scaffolding primary school students (9–12 years) in the development of their scientific reasoning. Our proof-of-concept uses an online application, that lets students work through the lessons while alternating hands-on and minds-on activities. A study was carried out (n = 490) showing that most students successfully complete the lessons within a standard lesson timeframe. The approach enables students to effectively apply several types of scientific reasoning and to do so more autonomously than in traditional science classes.
DOCUMENT
BACKGROUND: This paper reports a study about the effect of knowledge sources, such as handbooks, an assessment format and a predefined record structure for diagnostic documentation, as well as the influence of knowledge, disposition toward critical thinking and reasoning skills, on the accuracy of nursing diagnoses.Knowledge sources can support nurses in deriving diagnoses. A nurse's disposition toward critical thinking and reasoning skills is also thought to influence the accuracy of his or her nursing diagnoses.METHOD: A randomised factorial design was used in 2008-2009 to determine the effect of knowledge sources. We used the following instruments to assess the influence of ready knowledge, disposition, and reasoning skills on the accuracy of diagnoses: (1) a knowledge inventory, (2) the California Critical Thinking Disposition Inventory, and (3) the Health Science Reasoning Test. Nurses (n = 249) were randomly assigned to one of four factorial groups, and were instructed to derive diagnoses based on an assessment interview with a simulated patient/actor.RESULTS: The use of a predefined record structure resulted in a significantly higher accuracy of nursing diagnoses. A regression analysis reveals that almost half of the variance in the accuracy of diagnoses is explained by the use of a predefined record structure, a nurse's age and the reasoning skills of `deduction' and `analysis'.CONCLUSIONS: Improving nurses' dispositions toward critical thinking and reasoning skills, and the use of a predefined record structure, improves accuracy of nursing diagnoses.
DOCUMENT
The present study was aimed at investigating the effects of a video feedback coaching intervention for upper-grade primary school teachers on students’ cognitive gains in scientific knowledge. This teaching intervention was designed with the use of inquiry-based learning principles for teachers, such as the empirical cycle and the posing of thought-provoking questions. The intervention was put into practice in 10 upper-grade classrooms. The trajectory comprised four lessons, complemented with two premeasures and two postmeasures. The control condition consisted of 11 upper-grade teachers and their students. The success of the intervention was tested using an established standardized achievement test and situated measures. In this way, by means of premeasure and postmeasure questionnaires and video data, an assessment could be made of the change in students’ scientific knowledge before, during, and after the intervention. In this study, we primarily focused on the dynamics of students’ real-time expressions of scientific knowledge in the classroom. Important indicators of the effect of the intervention were found. Through focusing on the number of explanations and predictions, a significant increase could be seen in the proportion of students’ utterances displaying scientific understanding in the intervention condition. In addition, students in the intervention condition more often reasoned on higher complexity levels than students in the control condition. No effect was found for students’ scientific knowledge as measured with a standardized achievement test. Implications for future studies are stressed, as well as the importance of enriching the evaluation of intervention studies by focusing on dynamics in the classroom.
DOCUMENT
Voorbeelden en onderwijs lijken onlosmakelijk met elkaar verbonden. Het gebruik van voorbeelden is vaak zo vanzelfsprekend, dat zelfs in didactische opleidingen niet altijd aandacht wordt besteed aan de voorwaarden voor een optimal gebruik ervan. Voorbeelden blijken echter niet automatisch tot meer kennis en beter begrip te leiden. Leren van en door voorbeelden vereist bewuste aandacht en doet een beroep op analoog redeneren. Er is veel onderzoek gedaan naar de centrale rol van analoog redeneren in leren. De hieruit voortgekomen kennis en inzichten lijken echter nog niet algemeen bekend bij docenten noch breed geïmplementeerd in het onderwijs, zo komt ook naar voren uit een verkennend onderzoek aan De Haagse Hogeschool. Dit artikel vormt een eerste aanzet om kennis en inzichten in analoog redeneren en in het effectief gebruik van voorbeelden bredere bekendheid te geven. De aanbevelingen in het artikel zijn bedoeld om docenten te inspireren en uit te dagen. Abstract. The use of examples for teaching purposes would seem an obvious choice for teachers. This might be the reason why even courses intended to instruct teachers in their future profession sometimes skip over ways to make effective use of examples. However, research has shown that the use of examples does not automatically enhance a learner’s knowledge and understanding. Learning from examples requires conscious effort and attention and calls for analogical reasoning. Although the key role played by analogical reasoning in learning has been widely investigated, an exploratory study conducted among lecturers at The Hague University of Applied Sciences showed that not that many of them were familiar with the findings of these studies nor were these findings featured in their teaching. This article is an attempt to promote the acquisition of scientific knowledge and insights into analogical reasoning and the effective use of examples. The recommendations provided here are meant to inspire and challenge teachers.
DOCUMENT
In L1 grammar teaching, teachers often struggle with the students’ conceptual understanding of the subject matter. Frequently, students do not acquire an in-depth understanding of grammar, and they seem generally incapable of reasoning about grammatical problems. Some scholars have argued that an in-depth understanding of grammar requires making connections between concepts from traditional grammar and underlying metaconcepts from linguistic theory. In the current study, we evaluate an intervention aiming to do this, following up on a previous study that found a significant effect for such an approach in university students of Dutch Language and Literature (d = 0.62). In the current study, 119 Dutch secondary school students’ grammatical reasonings (N=684) were evaluated by language teachers, teacher educators and linguists pre and post intervention using comparative judgement. Results indicate that the intervention significantly boosted the students’ ability to reason grammatically (d = 0.46), and that many students can reason based on linguistic metaconcepts. The study also shows that reasoning based on explicit underlying linguistic metaconcepts and on explicit concepts from traditional grammar is more favored by teachers and (educational) linguists than reasoning without explicit (meta)concepts. However, some students show signs of incomplete acquisition of the metaconcepts. The paper discusses explanations for this incomplete acquisition.
DOCUMENT