Het doen van co-design en co-research samen met de mensen in het betreffende maatschappelijk domein kan veel beweging in gang zetten. Het is zaak om ook juist deze functie van applied design research als ‘key enabling methodology’ verder te ontwikkelen, evenals een repertoire van cases te verzamelen om uit te kunnen putten.
LINK
Design en onderzoek zijn twee kennisgebieden die elk hun eigen tradities, methoden, standaarden en praktijken hebben. Deze twee werelden lijken behoorlijk gescheiden, waarbij onderzoekers onderzoeken wat er is en ontwerpers visualiseren wat er zou kunnen zijn. Dit boek slaat een brug tussen beide werelden door te laten zien hoe design en onderzoek geïntegreerd kunnen worden om een nieuw kennisveld te ontwikkelen. Dit boek bevat 22 inspirerende beschouwingen die laten zien hoe de unieke kwaliteiten van onderzoek (gericht op het bestuderen van het heden) en ontwerp (gericht op het ontwikkelen van de toekomst) gecombineerd kunnen worden. Dit boek laat zien dat de transdisciplinaire aanpak toepasbaar is in een veelheid van sectoren, variërend van gezondheidszorg, stedelijke planning, circulaire economie en de voedingsindustrie. Het boek bestaat uit vijf delen en biedt een scala aan illustratieve voorbeelden, ervaringen, methoden en interpretaties. Samen vormen ze het kenmerk van een mozaïek, waarbij elk stukje een deel van het complete plaatje bijdraagt en alle stukjes samen een veelzijdig perspectief bieden op wat toegepast ontwerponderzoek is, hoe het wordt geïmplementeerd en wat de lezer ervan kan verwachten.
Background: With the increased attention on implementing inquiry activities in primary science classrooms, a growing interest has emerged in assessing students’ science skills. Research has been concerned with the limitations and advantages of different test formats to assess students’ science skills. Purpose: This study explores the construction of different instruments for measuring science skills by categorizing items systematically on three subskill levels (science-specific, thinking, metacognition,) and different activities of the empirical cycle.Sample: The study included 128 5th and 6th grade students from seven primary schools in the Netherlands.Design and method: Seven measures were used: a paper-and-pencil test, three performance assessments, two metacognitive self-report tests and a test used as an indication of general cognitive ability.Results: Reliabilities of all tests indicate sufficient internal consistency. Positive correlations between the paper-and-pencil test and performance assessments reinforce that the different tests measure a common core of similar skills thus providing evidence for convergent validity. Results also show that students’ ability in performing scientific inquiry is significantly related to general cognitive ability. No relations are found between the measure of general metacognitive ability and the paper-and-pencil test or the three performance assessments. By contrast the metacognitive self-report test constructed to obtain information about application of metacognitive abilities in performing scientific inquiry, shows significant - although small - correlations with two performance assessments. Further explorations reveal sufficient scale reliabilities on subskill and empirical step level.Conclusions: The present study shows that science skills can be measured reliably by categorizing items on subskill and step level. Additional diagnostic information can be obtained by examining mean scores on both subskill and step level. Such measures are not only suitable for assessing students’ mastery of science skills but can also provide teachers diagnostic information to adapt their instructions and foster the learning process of their students.
The main objective is to write a scientific paper in a peer-reviewed Open Access journal on the results of our feasibility study on increasing physical activity in home dwelling adults with chronic stroke. We feel this is important as this article aims to close a gap in the existing literature on behavioral interventions in physical therapy practice. Though our main target audience are other researchers, we feel clinical practice and current education on patients with stroke will benefit as well.
Evaluating player game experiences through biometric measurementsThe BD4CG (Biometric Design for Casual Games project) worked in a highly interdisciplinary context with several international partners. The aim of our project was to popularize the biometric method, which is a neuro-scientific approach to evaluating the player experience. We specifically aimed at the casual games sector, where casual games can be defined as video or web-based games with simple and accessible game mechanics, non threatening themes and generally short play sessions. Popular examples of casual games are Angry Birds and FarmVille. We focussed on this sector because it is growing fast, but its methodologies have not grown with it yet. Especially the biometrics method has so far been almost exclusively used domain by the very large game developers (such as Valve and EA). The insights and scientific output of this project have been enthusiastically embraced by the international academic arena. The aim of the grant was to focus on game producers in the casual sector, and we have done so but we also established further contacts with the game sector in general. Thirty-one outputs were generated, in the form of presentations, workshops, and accepted papers in prominent academic and industry journals in the field of game studies and game user research. Partners: University of Antwerpen, RANJ, Forward Games, Double Jungle, Realgames, Dreams of Danu, Codemasters, Dezzel, Truimph Studios, Golabi Studios
Synthetic ultra-black (UB) materials, which demonstrate exceptionally high absorbance (>99%) of visible light incident on their surface, are currently used as coatings in photovoltaic cells and numerous other applications. Most commercially available UB coatings are based on an array of carbon nanotubes, which are produced at relatively high temperature and result in numerous by-products. In addition, UB nanotube coatings require harsh application conditions and are very susceptible to abrasion. As a result, these coatings are currently obtained using a manufacturing process with relatively high costs, high energy consumption and low sustainability. Interestingly, an UB coating based on a biologically derived pigment could provide a cheaper and more sustainable alternative. Specifically, GLO Biotics proposes to create UB pigment by taking a bio-mimetic approach and replicate structures found in UB deep-sea fish. A recent study[1] has actually shown that specific fish have melanosomes in their skin with particular dimensions that allow absorption of up to 99.9% of incident light. In addition to this, recent advances in bacterial engineering have demonstrated that it is possible to create bacteria-derived melanin particles with very similar dimensions to the melanosomes in aforementioned fish. During this project, the consortium partners will combine both scientific observations in an attempt to provide the proof-of-concept for developing an ultra-black coating using bacteria-derived melanin particles as bio-based, sustainable pigment. For this, Zuyd University of Applied Sciences (Zuyd) and Maastricht University (UM) collaborate with GLO Biotics in the development of the innovative ‘BLACKTERIA’ UB coating technology. The partners will attempt at engineering an E. coli expression system and adapt its growth in order to produce melanin particles of desired dimensions. In addition, UM will utilize their expertise in industrial coating research to provide input for experimental set-up and the development of a desired UB coating using the bacteria-derived melanin particles as pigment.